Балаковский инженерно-технологический институт — филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Факультет атомной энергетики и технологий Кафедра «Физика и естественнонаучные дисциплины»

РАБОЧАЯ ПРОГРАММА

по дисциплине «Теоретическая механика»

Направления подготовки

«18.03.01. Химическая технология»

Основная профессиональная образовательная программа

«Химическая технология неорганических веществ»

Квалификация выпускника

Бакалавр

Форма обучения

Очная

Цель освоения дисциплины

Освоение обучающимися необходимого объема фундаментальных знаний о механическом взаимодействии, равновесии и движении материальных тел.

Теоретическая механика является не только дисциплиной, дающей углубленные знания о природе, но также воспитывает у обучающихся творческие навыки в построении математических моделей природных и технических процессов, содействует выработке способностей к логическим выводам и научным обобщениям, необходимым для решения профессиональных задач.

Место дисциплины в структуре ООП ВО

Изучение дисциплины «Теоретическая механика» требует основных компетенций, знаний, умений и навыков обучающегося по дисциплинам: - «Математика», «Физика».

В ходе изучения теоретической механики обучающийся получает знания, умения и навыки для успешного изучения следующих дисциплин: «Техническая термодинамика и теплотехника».

Компетенции обучающегося, формируемые в результате освоения дисциплины

В процессе освоения данной дисциплины у студента формируются следующие компетенции:

- универсальные

пьсрешьные	
Наименование	Индикаторы достижения компетенции
компетенции	
Способен исполь-	3-УКЕ-1 знать: основные законы естественнонаучных дисци-
зовать знания есте-	плин, методы математического анализа и моделирования, тео-
ственнонаучных	ретического и экспериментального исследования
дисциплин, приме-	У-УКЕ-1 уметь: использовать математические методы в тех-
нять методы мате-	нических приложениях, рассчитывать основные числовые ха-
матического анали-	рактеристики случайных величин, решать основные задачи
за и моделирова-	математической статистики; решать типовые расчетные зада-
ния, теоретического	чи
и эксперименталь-	В-УКЕ-1 владеть: методами математического анализа и моде-
ного исследования	лирования; методами решения задач анализа и расчета харак-
в поставленных за-	теристик физических систем, основными приемами обработки
дачах	экспериментальных данных, методами работы с прикладными
	программными продуктами
	Наименование компетенции Способен использовать знания естественнонаучных дисциплин, применять методы математического анализа и моделирования, теоретического и экспериментального исследования в поставленных за-

общепрофессиональные

- 001	цепрофессиональные	
ОПК-2	Способен исполь-	3-ОПК-2 знать: математические методы физических, химиче-
	зовать математиче-	ских явлений, основных законов физики и химии и применять
	ские, физические,	их в профессиональной деятельности
	физико-	У-ОПК-2 уметь: решать математические, физические, физико-
	химические, хими-	химические и химические задачи для обработки, анализа и си-
	ческие методы для	стематизации данных технологического процесса
	решения задач	В-ОПК-2 владеть: математическими, физическими, физико-
	профессиональной	химическими, химическими методами решения задач для
	деятельности	определения последовательности проведения анализов физико-
		химических характеристик сырья, вспомогательных материа-
		лов и готовой продукции

Задачи воспитания, реализуемые в рамках освоения дисциплины

Направление /цели	Создание условий, обеспечивающих	Использование воспитательного потенциала учебной дисциплины	Вовлечение в разнопла- новую внеучебную дея- тельность
Профессиона льное и тру- довое воспи- тание	- формирование культуры исследовательской и инженерной деятельности (B16)	Использование воспитательного потенциала дисциплин профессионального модуля для формирования инженерного мышления и инженерной культуры за счёт прак-	1. Организация научно- практических конферен- ций и встреч с ведущими специалистами предприя- тий города и ветеранами

тических студенческих исследова-	атомной отрасли.
ний современных производствен-	2. Организация и прове-
ных систем; проектной деятельно-	дение предметных олим-
сти студентов по разработке и оп-	пиад и участие в конкур-
тимизации технологических си-	сах профессионального
стем, связанной с решением реаль-	мастерства.
ных производственных задач; про-	3. Участие в ежегодных
хождения через разнообразные иг-	акциях студенческих
ровые, творческие, фестивальные	строительных отрядов
формы, требующие анализа слож-	
ного объекта, постановки относи-	
тельно него преобразовательных	
задач для их оптимального реше-	
ния.	

Структура и содержание учебной дисциплины Дисциплина преподается студентам в 3-ем семестре. Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 ак. часа.

Календарный план

Ma			де	Видь ятель			;.)		
№ ра 3 Д е ла	№ Т е м ы	Наименование раздела/темы дисциплины	Всего	Лекции	Лабораторные	Практические	CPC	Аттестация раздела (форма)	Макси- мальный балл за раздел
1		СТАТИКА						УО-1	20
	1	Основные понятия и аксиомы статики.	2	1	-	-	1		
	2	Система сходящихся сил.	4	1	-	2	1		
	3	Теория пар сил.	2	1	1	-	1		
	4	Приведение системы сил к центру. Условия равновесия.	2	1	-	-	1		
	5	Плоская система сил.	4	1	-	2	2		
	6	Трение.	3	1	ı	-	3		
	7	Пространственная система сил.	4	1	1	-	3		
	8	Центр тяжести.	3	1	ı	2	1		
2		КИНЕМАТИКА			1			УО-2	20
	9	Кинематика точки.	5	2		2	1		
	10	Простейшие движения твердого тела.	5	2	-	2	1		
	11	Плоское движение твердого тела.	5	2	-	2	1		
	12	Сферическое движение твердого тела. Движение свободного твердого тела.	1	-	-	-	1		
	13	Сложное движение точки.	6	2	1	2	2		
	14	Сложное движение твердого тела.	5	-	1	-	5		
3		ДИНАМИКА			-	-		УО-3	20
	15	Введение в динамику. Законы динамики.	2	1			1		
	16	Применение методов математического	5	1	-	2	2		
		анализа к интегрированию дифференциальных уравнений движения свободной точки.							

			144/ 20	32/ 10	-	32/ 10	44		100
д пр	ромеж	куточной аттестации					36	Экзамен	40
	30	Малые колебания системы около положения устойчивого равновесия.	1	-	-	-	1		
		ния системы в обобщенных координатах.			-				
	29	Дифференциальные уравнения движе-		2		2	2		
	28	Принцип возможных перемещений. Общее уравнение динамики.	1	_			1		
	26 27	Элементарная теория удара.	5	2	-	2	1 1		
	25	Принцип Даламбера. Метод кинетостатики.	1	-	-	-	1		
	24	Приложение общих теорем к динамике твердого тела.	5	2	-	2	1		
	23	Теорема об изменении кинетической энергии.	6	2	-	2	2		
	22	Теоремы об изменении момента количества движения материальной точки и кинетического момента механической системы.	3	1	-	1	1		
	21	Теоремы об изменении количества движения материальной точки и системы.		1	-	1	1		
	20	Теорема о движении центра масс системы.		-	-	-	1		
	19	Введение в динамику механической системы. Геометрия масс.	5	2	-	2	1		
	18	Применение методов математического анализа к исследованию прямолинейного колебательного движения точки.	6	2	-	2	2		
	17	Несвободное и относительное движения точки.	5	2	-	2	1		

Содержание лекционного курса

Темы лекции. Вопросы, отрабатываемые на лекции	Всего часов	Учебно- методическое обеспечение
1	2	3
Лекция 1. Основные понятия и аксиомы статики. Система	2	1,2,3,6
сходящихся сил.		
1. Основные понятия статики.		
2. Аксиомы статики и их следствия.		
3. Связи и реакции связей. Принцип освобождаемости от связей.		
Основные виды связей.		
4. Понятие системы сходящихся сил. Приведение системы сходящихся		
сил к равнодействующей.		
5. Условия равновесия системы сходящихся сил.		
6. Теорема о равновесии трех непараллельных сил.		
Лекция 2. Теория пар сил. Приведение системы сил к центру.	2	1,2,3,6
1. Пара сил. Момент пары (как вектор).		
2. Момент силы относительно центра (как вектор).		
3. Теоремы об эквивалентности и сложении пар и их следствия.		
4. Приведение произвольной системы пар к простейшему виду.		
5. Условия равновесия системы пар.		

6. Понятие главного вектора и главного момента системы сил. Основная		
теорема статики (теорема Пуансо о приведении произвольной системы		
сил к данному центру). Частные случаи приведения системы сил.		
7. Условия равновесия произвольной системы сил.		
8. Теорема Вариньона о моменте равнодействующей.		
Лекция 3. Плоская система сил. Пространственная система сил.	2	1,2,3,6
1. Момент силы относительно точки (как алгебраическая величина).		
2. Момент пары (как алгебраическая величина).		
3. Приведение плоской системы сил к простейшему виду.		
4. Условия равновесия плоской системы сил. Уравнения равновесия про-		
извольной плоской системы сил (три формы).		
5. Приведение пространственной системы сил к простейшему виду.		
Лекция 4. Кинематика точки.	2	1,2,3,6
1. Предмет и задачи кинематики.		
2. Способы задания движения точки.		
3. Скорость и ускорение точки при векторном способе задания движения.		
Скорость и ускорение точки при координатном способе задания движе-		
ния (в декартовых координатах). Скорость и ускорение точки при		
естественном способе задания движения.	2	1026
Лекция 5. Простейшие движения твердого тела.	2	1,2,3,6
1. Поступательное движение твердого тела. Теорема о поступательном		
движении. Уравнения поступательного движения твердого тела.		
2. Вращательное движение твердого тела вокруг неподвижной оси.		
Уравнение вращательного движения тела.		
3. Угловая скорость и угловое ускорение тела (как алгебраические вели-		
чины). Векторы угловой скорости и углового ускорения тела.		
Скорость и ускорение точки твердого тела, вращающегося вокруг неподвижной оси. Векторные выражения окружной скорости, вращательного		
и центростремительного ускорений.		
Лекция 6. Плоское движение твердого тела.	2	1,2,3,6
1. Свойства плоского движения. Уравнения движения плоской фигуры.	2	1,2,5,0
Разложение плоского движения на поступательное движение вместе с по-		
люсом и вращение вокруг полюса.		
2. Теорема о скоростях точек плоской фигуры и её следствия.		
3. Мгновенный центр скоростей. Способы нахождения мгновенного цен-		
тра скоростей. Определение скоростей точек плоской фигуры с помощью		
мгновенного центра скоростей.		
4. Теорема об ускорениях точек плоской фигуры. Понятие о мгновенном		
центре ускорений.		
Лекция 7. Сложное движение точки.	2	1,2,3,6
1. Относительное, переносное и абсолютное движения точки.		, ,- ,-
2. Теорема о сложении скоростей.		
3. Теорема о сложении ускорений (теорема Кориолиса), кориолисово		
ускорение.		
Лекция 8. Введение в динамику. Законы динамики.	2	1,2,3,6
Дифференциальные уравнения движения свободной точки.		, , ,
1. Предмет динамики, основные понятия и определения. Законы динами-		
ки (законы Галилея-Ньютона). Основные задачи динамики.		
Основные виды сил.		
2. Применение методов математического анализа к интегрированию диф-		
ференциальных уравнений движения материальной точки под действием		
постоянных и переменных сил. Дифференциальные уравнения движения		
материальной точки.		
3. Решение первой задачи динамики точки. Решение второй задачи дина-		
мики точки при прямолинейном движении (случаи: постоянной силы; си-		
лы, зависящей от скорости; силы, зависящей от положения точки; силы,		

зависящей от времени). Естественные уравнения движения материальной		
точки.		
4. Решение второй задачи динамики при криволинейном движении точки.		
Лекция 9. Несвободное и относительное движения точки.	2	1,2,3,6
1. Несвободное движение точки. Движение точки по заданной неподвиж-		
ной кривой.		
2. Относительное движение точки.		
3. Понятие переносной и кориолисовой сил инерции точки.		
4. Влияние вращения Земли на равновесие и движение тел.		
Лекция 10. Прямолинейные колебания точки.	2	1,2,3,6
1. Применение методов математического анализа к решению однородного	_	-,-,-,-
и неоднородного дифференциального уравнения второго порядка.		
2. Свободные колебания. Свободные колебания при наличии трения		
скольжения. Свободные колебания при линейно-вязком сопротивлении.		
Апериодическое движение точки.		
3. Вынужденные колебания. Вынужденные колебания при наличии ли-		
нейно-вязкого сопротивления среды. Апериодическое движение точки.		
4. Явление биений. Явление резонанса.	2	1006
Лекция 11. Введение в динамику механической системы.	2	1,2,3,6
Геометрия масс.		
1. Механическая система. Внешние и внутренние силы. Свойства		
внутренних сил.		
2. Дифференциальные уравнения движения системы. Масса системы.		
3. Центр масс системы. Определение координат центра масс механиче-		
ской системы.		
4. Моменты инерции системы и твердого тела относительно оси.		
Радиус инерции. Вычисление моментов инерции простейших тел. Теорема		
о моментах инерции относительно параллельных осей (теорема Гюйгенса-		
Штейнера). Центробежные моменты инерции.		
5. Эллипсоид инерции. Главные оси и главные моменты инерции. Вычис-		
ление момента инерции твердого тела относительно произвольной оси.		
Понятие о тензоре инерции.		
Лекция 12. Теоремы об изменении количества движения материаль-	2	1,2,3,6
ной точки и системы. Теоремы об изменении момента количества	_	1,2,5,0
движения материальной точки и кинетического момента механиче-		
ской системы.		
1. Количество движения материальной точки.		
2. Элементарный импульс силы. Импульс постоянной и переменной силы.		
Теорема об импульсе равнодействующей.		
3. Теорема об изменении количества движения точки в дифференциальной		
и конечной формах.		
4. Количество движения механической системы. Теорема об изменении		
количества движения механической системы в дифференциальной и ко-		
нечной формах. Следствия. Закон сохранения количества движения		
механической системы.		
5. Момент количества движения материальной точки относительно центра		
и относительно оси. Теорема об изменении момента количества движения		
материальной точки.		
6. Кинетический момент механической системы относительно центра и		
относительно оси. Теорема об изменении кинетического момента		
механической системы. Следствия.		
Лекция 13. Теорема об изменении кинетической энергии.	2	1,2,3,6
1. Работа постоянной силы. Работа переменной силы. Работа силы тяже-	_	,-,-,-
сти. Работа силы упругости. Работа постоянной силы трения. Мощность.		
2. Кинетическая энергия материальной точки. Теорема об изменении ки-		
нетической энергии материальной точки в дифференциальной и конечной		
пети теской эпергии материальной точки в дифференциальной и консчиой		

формах. 3. Кинетическая энергия механической системы. Вычисление кинетической энергии твердого тела в различных случаях его движения. 4. Работа и мощность сил, приложенных к твердому телу, при поступательном и вращательном движениях тела. Работа сил тяжести механической системы и твердого тела. Работа внутренних сил твердого тела. 5. Теорема об изменении кинетической энергии механической системы. 6. Потенциальная энергия. Закон сохранения полной механической энергии системы.		
Лекция 14. Приложение общих теорем к динамике твердого тела.	2	1,2,3
1. Дифференциальные уравнения поступательного движения твердого те-		
ла.		
2. Дифференциальное уравнение вращательного движения твердого тела		
вокруг неподвижной оси.		
3. Дифференциальные уравнения плоского движения твердого тела.		
4. Дифференциальные уравнения сферического движения твердого тела.		
5. Дифференциальные уравнения движения свободного твердого тела.		
Лекция 15. Принцип возможных перемещений.	2	1,2,3
1. Связи и их уравнения. Классификация связей.		
2. Возможные (виртуальные) перемещения голономной системы. Число		
степеней свободы голономной системы.		
3. Принцип возможных перемещений.		
Лекция 16. Дифференциальные уравнения движения системы в обоб-	2	1,2,3
щенных координатах.		
1. Дифференциальные уравнения движения механической системы в		
обобщенных координатах (уравнения Лагранжа второго рода).		
2. Кинетический потенциал.		
3. Интеграл энергии и циклические координаты.		

Перечень практических занятий

Тема практического занятия. Вопросы, отрабатываемые на практическом занятии	Всего часов	Учебно- методическое обеспечение
1	2	3
Система сходящихся сил. Равновесие тела, находящегося под дей-	2	4,5,7,8
ствием системы сходящихся сил. Расчет ферм методом вырезания		
узлов.		
Плоская система сил. Равновесие рычага. Момент силы относительно	2	4,5,7,8
точки. Определение реакций опор твердого тела, находящегося под		
действием произвольной плоской системы сил. Теорема Вариньона.		
Определение реакций опор и внутренних реакций систем тел (состав-		
ных конструкций).		
Центр тяжести. Определение положения центра тяжести твердых тел	2	4,5,7,8
методом разбиения и методом отрицательных весов.		
Кинематика точки. Определение траектории, скорости и ускорения	2	4,5,7,8
точки по заданным уравнениям её движения. Определение скорости и		
ускорения точки при естественном способе задания её движения.		
Простейшие движения твердого тела. Определение кинематических	2	4,5,7,8
характеристик вращательного движения твердого тела. Определение		
скоростей и ускорений точек тела при вращательном движении. Преоб-		
разование простейших движений твердого тела.		
Плоское движение твердого тела. Определение скоростей и ускорений	2	4,5,7,8
точек твердого тела при плоском движении. Планы скоростей и ускоре-		
ний. Мгновенный центр скоростей. Мгновенный центр ускорений.		

Сложное движение точки. Уравнения движения и траектория точки	2	4,5,7,8
при сложном движении. Сложение скоростей точки. Сложение ускоре-		
ний точки при переносном поступательном движении.		
Сложение ускорений точки при переносном вращательном движении.		
Прямая и обратная задачи динамики точки. Определение сил по за-	2	4,5,7,8
данному движению. Определение параметров прямолинейного движе-		
ния точки по заданным силам (при постоянной силе; при силе, завися-		
щей только от времени; при силе, зависящей только от положения точ-		
ки; при силе, зависящей только от времени). Определение параметров		
криволинейного движения точки по заданным силам.	2	4570
Несвободное и относительное движения точки. Составление и решение дифференциальных уравнений движения точки в случае несвобод-	2	4,5,7,8
ного и относительного движения.		
Прямолинейные колебания точки. Свободные незатухающие колеба-	2	4,5,7,8
ния. Свободные затухающие колебания. Вынужденные колебания.	2	4,5,7,6
Случай резонанса.		
Геометрия масс. Определение положения центра масс механической	2	4,5,7,8
системы. Определение моментов инерции твердых тел. Применение	2	7,5,7,0
теоремы Гюйгенса-Штейнера.		
Теоремы об изменении количества движения материальной точки и	1	4,5,7,8
системы. Теорема об изменении количества движения материальной	•	1,5,7,0
точки. Применение теоремы об изменении количества движения к ис-		
следованию движения механической системы и твердого тела.		
Дифференциальное уравнение поступательного движения.		
Теоремы об изменении момента количества движения материаль-	1	4,5,7,8
ной точки и кинетического момента механической системы. Теоре-		, , ,
ма об изменении момента количества движения материальной точки.		
Применение теоремы об изменении кинетического момента к исследо-		
ванию движения механической системы и твердого тела.		
Дифференциальное уравнение вращения твердого тела вокруг		
неподвижной оси.		
Теорема об изменении кинетической энергии системы. Теорема об	2	4,5,7,8
изменении кинетической энергии материальной точки. Мощность. Ки-		
нетическая энергия твердого тела в различных случаях его движения.		
Работа и мощность сил, приложенных к твердому телу, при поступа-		
тельном и вращательном движениях тела. Применение теоремы об из-		
менении кинетической энергии к исследованию движения механической		
системы и твердого тела.	2	4570
Приложение общих теорем к динамике твердого тела. Составление и	2	4,5,7,8
интегрирование дифференциальных уравнений поступательного, вращательного и плоского дрижений трердого тела		
тельного и плоского движений твердого тела.	2	1570
Принцип возможных перемещений. Связи и их уравнения. Классификация связей. Возможные (виртуальные) перемещения голономной си-	2	4,5,7,8
стемы. Число степеней свободы голономной системы. Принцип воз-		
можных перемещений. Определение соотношений между силами в ме-		
ханизмах. Определение уравновешивающих сил механизмов. Примене-		
ние принципа возможных перемещений к определению реакций опор		
составной конструкции.		
Дифференциальные уравнения движения системы в обобщенных	2	4,5,7,8
координатах. Выбор обобщенных координат механической системы.	-	1,5,7,0
	1	
Определение обобщенных сил системы с одной степенью свободы.		
Определение обобщенных сил системы с одной степенью свободы. Определение обобщенных сил системы с двумя степенями свободы.		
Определение обобщенных сил системы с одной степенью свободы. Определение обобщенных сил системы с двумя степенями свободы. Применение уравнения Лагранжа второго рода для исследования дви-		

Перечень лабораторных работ - не предусмотрены учебным планом

Задания для самостоятельной работы студентов

задания для самостоятельной расоты студентов		¥7 #
Вопросы для самостоятельного изучения (задания)	Всего часов	Учебно- методическое обеспечение
1	2	3
Раздел 1. СТАТИКА		
Основные понятия и аксиомы статики.	1	
Теоретические вопросы.		1,2,3,6
Предмет статики. Основные понятия статики. Основные задачи статики.		
Аксиомы статики. Основные виды связей.		
Система сходящихся сил.	1	1,2,3,6
Теоретические вопросы.		4,5,7,8
Понятие системы сходящихся сил. Равнодействующая сходящихся сил.		
Геометрический и алгебраический способ определения равнодействую-		
щей. Условия равновесия системы сходящихся сил в алгебраической и		
геометрической формах. Теорема о равновесии трех непараллельных сил.		
Решение задач.		
Равновесие твердых тел под действием плоской системы сходящихся сил.		
Определение опорных реакций. Расчет плоской фермы методом вырезания		
узлов. Равновесие твердых тел под действием пространственной системы		
сходящихся сил.		
Теория пар сил.	1	1,2,3,6
Теоретические вопросы.		
Сложение двух параллельных сил (приведение к равнодействующей).		
Пара сил. Момент пары (как вектор). Момент силы относительно центра		
(как вектор). Взаимосвязь момента пары и моментов сил пары относительно		
произвольной точки. Теоремы об эквивалентности и сложении пар и их		
следствия. Приведение произвольной системы пар к простейшему виду.		
Условия равновесия системы пар.		
Приведение системы сил к центру. Условия равновесия.	1	1,2,3,6
Теоретические вопросы.		
Лемма о параллельном переносе силы. Понятие главного вектора и глав-		
ного момента системы сил. Основная теорема статики (теорема		
Пуансо о приведении произвольной системы сил к данному центру). Част-		
ные случаи приведения системы сил. Условия равновесия произвольной си-		
стемы сил. Теорема Вариньона о моменте равнодействующей.		
Плоская система сил.	2	1,2,3,6
Теоретические вопросы.		4,5,7,8,9,10
Момент силы относительно точки (как алгебраическая величина). Мо-		
мент пары (как алгебраическая величина). Приведение плоской системы		
сил к простейшему виду. Условия равновесия плоской системы сил. Урав-		
нения равновесия произвольной плоской системы сил (три формы). Ста-		
тически определимые и статически неопределимые		
системы тел. Условия равновесия рычага. Устойчивость тела при опрокиды-		
вании. Коэффициент устойчивости.		
Решение задач.		
Равновесие твердых тел под действием произвольной плоской системы		
сил. Равновесие систем тел. Определение внутренних реакций. Определение опорных реакций. Расчет плоской фермы методом сечений (Риттера). Рав-		
новесие рычага. Проверка устойчивости твердого тела при действии опро-		
кидывающей нагрузки, определение коэффициента устойчивости.		
кидывающей нагрузки, определение коэффициента устоичивости.		

Трение.	3	1,2,3,6
Теоретические вопросы.		4,5,7,8
Законы трения скольжения. Равновесие тела при наличии трения сколь-		
жения. Угол трения, конус трения. Равновесие тела при наличии трения ка-		
чения. Равновесие твердых тел при наличии трения гибких тел. Формула		
Эйлера.		
Решение задач.		
Равновесие тела и систем тел при учете трения скольжения. Равновесие		
тела на наклонной плоскости. Равновесие цилиндрических и сферических		
твердых тел при наличии трения качения. Сопротивление перекатыванию.		1.00.6
Пространственная система сил.	3	1,2,3,6
Теоретические вопросы.		4,5,7,8
Момент силы относительно оси. Взаимосвязь момента силы относитель-		
но оси и момента силы относительно точки на этой оси. Аналитическое		
определение главного вектора и главного момента пространственной систе-		
мы сил. Уравнения равновесия произвольной пространственной системы		
сил. Теорема Вариньона о моменте равнодействующей относительно оси.		
Решение задач.		
Определение главного вектора и главного момента системы сил. Приве-		
дение системы сил к данному центру. Приведение системы сил к простей-		
шему виду. Равновесие твердых тел и систем тел под действием произволь-		
ной пространственной системы сил.		
Определение опорных и внутренних реакций. Равновесие частично закреп-		
ленных твердых тел.	1	1.2.2.6
Центр тяжести. Т	1	1,2,3,6
Теоретические вопросы.		4,5,7,8,9,10
Центр параллельных сил. Формулы для радиуса-вектора и координат		
центра параллельных сил. Равнодействующая сил тяжести твердого тела.		
Центр тяжести твердого тела. Центр тяжести однородного тела (объема,		
площади, линии). Центр тяжести плоской фигуры. Центр тяжести линии.		
Методы нахождения центра тяжести. Нахождение центров тяжести про-		
стейших фигур. Способы нахождения центров тяжести тел (интегрирование,		
симметрия, разбиение, дополнение (способ «отрицательных» весов), экспе-		
риментальный способ). Решение задач.		
Определение положения центра тяжести однородных твердых тел различными способами.		
Раздел 2. КИНЕМАТИКА Кинематика точ-	1	1,2,3,6
газдел 2. КИПЕМАТИКА Кинематика 104- ки.	1	4,5,7,8
ки. Теоретические вопросы.		4,3,7,6
Предмет и задачи кинематики. Способы задания движения точки. Ско-		
рость и ускорение точки при векторном способе задания движения. Годо-		
граф скорости точки. Скорость и ускорение точки при координатном спосо-		
бе задания движения (в декартовых координатах). Естественный трехгран-		
ник, естественные координатные оси. Центр и радиус кривизны траектории.		
Скорость и ускорение точки при естественном способе задания движения.		
Частные случаи движения точки. Графики движения, пути, скорости и		
ускорения точки.		
Решение задач.		
Исследование прямолинейного движения точки. Исследование криволи-		
нейного движения точки (определение траектории, скорости и ускорения,		
годографа скорости) при векторном, координатном и естественном способах		
задания движения точки.		
Простейшие движения твердого тела.	1	1,2,3,6
Теоретические вопросы.	1	4,5,7,8
Поступательное движение твердого тела. Теорема о поступательном дви-		1,0,7,0
терительное движение твердого тели. Теореми о поступительном дви-		

жении. Уравнения поступательного движения твердого тела. Вращательное движение твердого тела вокруг неподвижной оси. Уравнение вращательного движения тела. Угловая скорость и угловое ускорение тела (как алгебраические величины). Скорость и ускорение точки твердого тела, вращающегося вокруг неподвижной оси. Векторы угловой скорости и углового ускорения		
тела. Векторные выражения окружной скорости, вращательного и центростремительного ускорений. Частные случаи вращательного движения тела (равномерное и равнопеременное вращение).		
Решение задач.		
Определение кинематических параметров поступательного движения твердого тела. Исследование вращательного движения твердого тела вокруг неподвижной оси. Преобразование простейших движений твердого тела.		
Передаточные механизмы.		
Плоское движение твердого тела.	1	1,2,3,6
Теоретические вопросы.		4,5,7,8
Свойства плоского движения. Уравнения движения плоской фигуры. Разложение плоского движения на поступательное движение вместе с полюсом и вращение вокруг полюса. Теорема о скоростях точек плоской фигуры и её следствия. Мгновенный центр скоростей. Способы нахождения мгновенного центра скоростей. Определение скоростей точек плоской фигуры с помо-		
щью мгновенного центра скоростей. Теорема об ускорениях точек плоской		
фигуры. Понятие о мгновенном центре ускорений. Способы определения		
мгновенного центра ускорений плоской фигуры.		
Решение задач.		
Составление уравнений движения плоской фигуры в её плоскости. Определение скоростей точек твердого тела при плоском движении.		
Определение скоростей точек твердого тела при плоском движении. Определение угловой скорости. Мгновенный центр скоростей.		
Определение угловой скорости. Ин повенный центр скоростей. Определение ускорений точек твердого тела при плоском движении.		
Определение ускорении точек твердого тела при плоском движении. Определение углового ускорения. Мгновенный центр ускорений.		
Сферическое движение твердого тела.	1	1,2,3,6
Теоретические вопросы.	•	4,5,7,8,9,10
Углы Эйлера. Уравнения сферического движения. Мгновенная ось враще-		.,0,7,0,7,10
ния. Уравнение мгновенной оси вращения твердого тела при сферическом		
движении. Угловая скорость и угловое ускорение тела. Определение скоро-		
стей и ускорений точек тела при сферическом движении. Распределение		
скоростей точек тела при сферическом движении. Проекции скорости точки		
тела на оси декартовых координат.		
Решение задач.		
Исследование сферического движения твердого тела.		
Пространственная ориентация тела, углы Эйлера.		
Движения свободного твердого тела.		
Теоретические вопросы.		
Разложение движения свободного твердого тела на поступательное движе-		
ние вместе с полюсом и сферическое движение вокруг полюса. Уравнения		
движения свободного твердого тела. Независимость векторов угловой ско-		
рости и углового ускорения свободного тела от выбора полюса. Определе-		
ние скоростей и ускорений точек свободного твердого тела. <i>Решение задач</i> .		
Уравнения движения свободного твердого тела. Определение скоростей и		
ускорений точек свободного тела.		
Сложное движение точки.	2	1,2,3,6
Теоретические вопросы.	-	4,5,7,8
Относительное, переносное и абсолютное движения точки. Задание слож-)-) -)-
ного движения точки. Теорема о сложении скоростей. Теорема о сложении ускорений (теорема Кориолиса), кориолисово ускорение.		
Случаи отсутствия кориолисова ускорения.		

Решение задач.		
Уравнения движения точки. Сложение скоростей и ускорений точки		
(случай поступательного переносного движения, случай вращательного пе-		
реносного движения).		
Сложное движение твердого тела.	5	1,2,3
Теоретические вопросы.		4,5,7,8
Сложение поступательных движений. Сложение вращений твердого тела		
вокруг параллельных осей. Пара вращений. Сложение вращений твердого		
тела вокруг пересекающихся осей. Сложение поступательного и вращатель-		
ного движений. Винтовое движение.		
Общий случай сложения движений твердого тела.		
Решение задач.		
Сложение поступательных движений. Сложение вращений твердого тела		
вокруг параллельных осей. Исследование движения планетарных и диффе-		
ренциальных зубчатых механизмов с цилиндрическими колесами.		
Сложение вращений твердого тела вокруг пересекающихся осей. Исследо-		
вание движения планетарных и дифференциальных зубчатых механизмов с		
коническими колесами. Сложение поступательного и вращательного		
движений. Винтовое движение.		
Раздел 3. ДИНАМИКА	1	1,2,3,6
Введение в динамику. Законы динамики.		
Теоретические вопросы.		
Предмет динамики, основные понятия и определения. Пространство и вре-		
мя в классической механике. Инерциальные системы отсчета.		
Законы динамики (законы Галилея-Ньютона). Инертность материальных		
тел. Основные задачи динамики. Основные виды сил.		
Применение методов математического анализа к интегрирова-	2	1,2,3,6
нию дифференциальных уравнений движения свободной точки.		4,5,7,8
Теоретические вопросы.		
Применение методов математического анализа к интегрированию диффе-		
ренциальных уравнений движения материальной точки под действием по-		
стоянных и переменных сил. Дифференциальные уравнения движения мате-		
риальной точки. Решение первой задачи динамики точки. Решение второй		
задачи динамики точки при прямолинейном движении (случаи: постоянной		
силы; силы, зависящей от скорости; силы, зависящей от положения точки;		
силы, зависящей от времени). Естественные уравнения движения матери-		
альной точки. Решение второй задачи динамики при криволинейном движе-		
нии точки.		
Решение задач.		
Определение сил по заданному движению точки (случай прямолинейного		
движения, случай криволинейного движения). Составление и решение диф-		
ференциальных уравнений движения свободной материальной точки (слу-		
чаи прямолинейного и криволинейного движения, случаи постоянных и пе-		
ременных сил).		
Несвободное и относительное движения точки.	1	1,2,3
Теоретические вопросы.		4,5,7,8
Несвободное движение точки. Движение точки по заданной неподвижной		
кривой. Относительное движение точки. Понятие переносной и кориолисо-		
вой сил инерции точки. Влияние вращения Земли на равновесие и движение		
тел.		
Решение задач.		
Составление и решение дифференциальных уравнений движения несво-		
бодной материальной точки (случаи прямолинейного и криволинейного		
движения, случаи постоянных и переменных сил). Составление и решение		
дифференциальных уравнений относительного движения материальной		
точки.		

Применение методов математического анализа к исследованию прямолинейного колебательного движения точки.	2	1,2,3 4,5,7,8
		4,5,7,6
Теоретические вопросы.		
Применение методов математического анализа к решению однородного и		
неоднородного дифференциального уравнения второго порядка. Свобод-		
ные колебания. Свободные колебания при наличии трения скольжения.		
Свободные колебания при линейновязком сопротивлении. Апериодическое		
движение точки. Вынужденные колебания. Вынужденные колебания при		
наличии линейно-вязкого сопротивления среды. Апериодическое движение		
точки. Явление биений. Явление резонанса.		
Решение задач.		
Исследование свободных колебаний материальных тел. Влияние различ-		
ных видов сопротивления на свободные колебания тела. Вынужденные ко-		
лебания тела. Влияние различных видов сопротивления на вынужденные		
колебания тела. Биения, резонанс.		
Введение в динамику механической системы. Геометрия масс.	1	1,2,3
Теоретические вопросы.		4,5,7,8,9,10
Механическая система. Внешние и внутренние силы. Свойства внутренних		
сил. Дифференциальные уравнения движения системы. Масса системы.		
Центр масс системы. Определение координат центра масс механической си-		
стемы. Моменты инерции системы и твердого тела относительно оси. Ради-		
ус инерции. Вычисление моментов инерции простейших тел. Теорема о мо-		
ментах инерции относительно параллельных осей (теорема Гюйгенса-		
Штейнера). Центробежные		
моменты инерции. Эллипсоид инерции. Главные оси и главные		
моменты инерции. Вычисление момента инерции твердого тела отно-		
сительно произвольной оси. Понятие о тензоре инерции.		
Решение задач.		
Определение положения центра масс механической системы.		
Вычисление осевых и центробежных моментов инерции однородных тел и		
систем тел.		
Теорема о движении центра масс системы.	1	1,2,3
Теоретические вопросы.		4,5,7,8
Теорема о движении центра масс. Следствия. Закон сохранения движения		
центра масс.		
Решение задач.		
Применение теоремы о движении центра масс к исследованию движения		
механической системы и твердого тела.		
Теоремы об изменении количества движения материальной точки и	1	1,2,3,6
системы.	_	4,5,7,8
Теоретические вопросы.		1,2,7,70
Количество движения материальной точки. Элементарный импульс силы.		
Импульс постоянной и переменной силы. Теорема об импульсе равнодей-		
ствующей. Теорема об изменении количества движения точки в дифферен-		
циальной и конечной формах. Количество движения механической системы.		
Теорема об изменении количества движения механической системы в диф-		
ференциальной и конечной формах. Следствия. Закон сохранения количе-		
ства движения механической системы.		
Решение задач.		
Применение теоремы об изменении количества движения к исследованию		
движения материальной точки. Определение главного вектора количеств		
движения материальной точки. Определение главного вектора количеств движения механической системы. Применение теоремы об изменении коли-		
чества движения к исследованию движения механической системы и твер-		
дого тела. Теоремы об изменении момента количества движения материальной	1	1,2,3
	1	
точки и кинетического момента механической системы.		4,5,7,8

Теоретические вопросы. Момент количества движения материальной точки относительно центра и относительно оси. Теорема об изменении момента количества движения материальной точки. Кинетический момент механической системы относительно центра и относительно оси. Теорема об изменении кинетического момента механической системы. Следствия. Закон сохранения кинетического момента механической системы. Скамейка Жуковского. Необходимые условия равновесия любой механической системы. Решение задач. Применение теоремы об изменении момента количества движения к исследованию движения материальной точки. Определение кинетического момента механической системы. Применение теоремы об изменении кинетического момента к исследованию движения механической системы и твердого тела.		
Теорема об изменении кинетической энергии. Теоремические вопросы. Работа постоянной силы. Работа переменной силы. Теорема о работе равнодействующей. Работа силы тяжести. Работа силы упругости. Работа постоянной силы трения. Мощность. Коэффициент полезного действия. Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии точки в дифференциальной и конечной формах. Решение задач. Вычисление работы и мощности постоянных и переменных сил. Применение теоремы об изменении кинетической энергии к исследованию движения материальной точки. Теоретические вопросы. Кинетическая энергия механической системы и способы её вычисления. Вычисление кинетической энергии твердого тела в различных случаях его движения. Работа и мощность сил, приложенных к твердому телу, при поступательном и вращательном движениях. Работа сил тяжести механической системы и твердого тела. Работа внутренних сил твердого. Потенциальная энергия. Вычисление потенциальной энергии механической системы и твердого тела. Закон сохранения полной механической энергии системы. Решение задач. Вычисление кинетической энергии материальных тел в различных случаях движения. Вычисление кинетической энергии механических систем. Применение теоремы об изменении кинетической энергии механических систем. Применение теоремы об изменении кинетической энергии к исследованию движения материальных тел и механической энергии к исследованию движения материального пработа польком пр	2	1,2,3,6 4,5,7,8
Приложение общих теорем к динамике твердого тела. Теоретические вопросы. Дифференциальные уравнения поступательного движения твердого тела. Дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси. Дифференциальные уравнения плоского движения твердого тела. Дифференциальные уравнения сферического движения твердого тела. Дифференциальные уравнения свободного твердого тела. Дифференциальные уравнения свободного твердого тела. Решение задач. Составление и решение дифференциальных уравнений различных движений твердого тела.	1	1,2,3 4,5,7,8

		1001
Принцип Даламбера. Метод кинетостатики.	1	1,2,3,6
Теоретические вопросы.		4,5,7,8
Сила инерции материальной точки. Центробежная и касательная составля-		
ющие силы инерции точки. Принцип Даламбера для точки и механической		
системы. Приведение сил инерции точек твердого тела к простейшему виду		
(главный вектор и главный момент сил инерции). Динамические реакции,		
действующие на ось вращающегося тела. Случай вращения твердого тела		
вокруг его главной центральной оси инерции. Уравновешивание вращаю-		
щихся тел.		
Решение задач.		
Применение принципа Даламбера к исследованию движения точки. Метод		
кинетостатики для материальной точки. Определение главного вектора и		
главного момента сил инерции материального тела в различных случаях его		
движения. Метод кинетостатики для механической системы. Определение		
динамических реакций подшипников вращающегося тела.	1	1 2 2
Элементарная теория удара.	1	1,2,3 4,5,7,8
Теоретические вопросы.		4,3,7,6
Основные понятия и определения теории удара. Основное уравнение теории удара. Основное уравнение теории удара.		
рии удара. Допущения теории удара. Общие теоремы теории удара. Удар шара о неподвижную поверхность. Коэффициент восстановления. Прямой		
центральный удар двух тел. Предельные случаи. Потеря кинетической энер-		
гии при неупругом ударе двух тел.		
Теорема Карно.		
Удар по телу, имеющему неподвижную ось вращения. Центр удара.		
Решение задач.		
Тешение заосич. Действие ударной силы на материальную точку. Прямой центральный удар		
двух тел. Действие ударных сил на твердое тело, имеющее неподвижную		
ось вращения.		
Принцип возможных перемещений.	1	1,2,3
Теоретические вопросы.	1	4,5,7,8
Связи и их уравнения. Классификация связей. Возможные (виртуальные)		1,5,7,0
перемещения голономной системы. Число степеней свободы голономной		
системы. Принцип возможных перемещений.		
Решение задач.		
Определение типов связей. Определение числа степеней свободы механи-		
ческой системы. Определение соотношений между возможными перемеще-		
ниями системы. Применение принципа возможных перемещений к решению		
задач о равновесии сил, приложенных к механической системе с одной сте-		
пенью свободы. Применение принципа возможных перемещений к опреде-		
лению реакций опор составной конструкции.		
Общее уравнение динамики.	1	1,2,3
Теоретические вопросы.		4,5,7,8
Принцип возможных перемещений в случае движения системы. Общее		, , ,
уравнение динамики. Обобщенные координаты и обобщенные скорости ме-		
ханической системы. Обобщенные силы. Общее уравнение динамики в		
обобщенных силах. Условия равновесия в обобщенных координатах.		
Решение задач.		
Определение обобщенных сил инерции в системах с одной и двумя степе-		
нями свободы. Применение общего уравнения динамики к исследованию		
движения механической системы с одной степенью свободы. Применение		
общего уравнения динамики для определения внешних воздействий и пара-		
метров механической системы.		

Дифференциальные уравнения движения системы в обобщенных ко-	2	1,2,3
ординатах.		4,5,7,8
Теоретические вопросы.		
Определение обобщенных сил в системах с одной и двумя степенями свобо-		
ды. Дифференциальные уравнения движения механической системы в		
обобщенных координатах (уравнения Лагранжа второго рода). Кинетиче-		
ский потенциал. Интеграл энергии и циклические координаты.		
Решение задач.		
Выявление обобщенных координат механической системы.		
Определение обобщенных сил в системах с одной и двумя степенями сво-		
боды. Составление уравнений Лагранжа второго рода для механических си-		
стем с одной и двумя степенями свободы. Применение уравнений Лагранжа		
второго рода к исследованию движения систем с одной и двумя степенями		
свободы. Определение кинетического потенциала механической системы.		
Малые колебания системы около положения устойчивого равновесия.	1	1,2,3
Теоретические вопросы.		4,5,7,8,9,10
Понятие об устойчивости равновесия. Определение положений равнове-		
сия системы. Критерии устойчивости положения равновесия системы. Ма-		
лые свободные колебания консервативной системы с одной степенью сво-		
боды около положения устойчивого равновесия.		
Исследование свободных колебаний механической системы с двумя степе-		
нями свободы около положения устойчивого равновесия. Малые затухаю-		
щие и вынужденные колебания консервативной системы с одной степенью		
свободы около положения устойчивого равновесия. Малые свободные коле-		
бания консервативной системы с двумя степенями свободы около положе-		
ния устойчивого равновесия. Малые вынужденные колебания консерватив-		
ной системы с двумя степенями свободы около положения устойчивого рав-		
новесия.		
Решение задач.		
Исследование свободных малых колебаний механической системы с одной		
степенью свободы. Исследование вынужденных малых колебаний механи-		
ческой системы с одной степенью свободы. Исследование свободных малых		
колебаний механической системы с двумя степенями свободы. Исследова-		
ние вынужденных малых колебаний механической системы с двумя степе-		
нями свободы.		

Расчетно-графическая работа не предусмотрена учебным планом

Курсовая работа не предусмотрена учебным планом

Образовательные технологии

При реализации учебного материала курса используются различные образовательные технологии, способствующие созданию атмосферы свободной и творческой дискуссии как между преподавателем и студентами, так и в студенческой группе. Целью при этом является выработка у студентов навыков и компетенций, позволяющих самостоятельно вести исследовательскую и научно-педагогическую работу.

При изучении дисциплины применяются следующие образовательные технологии:

- классическое лекционное обучение с использованием наглядных пособий;
- проведение лекций при поддержке мультимедиа;
- проведение практических занятий с решением примеров у доски, а также при поддержке мультимедиа, самостоятельное решение задач обучающимися в присутствии преподавателя;
 - проблемный подход;
 - разноуровневое обучение;
- самостоятельное изучение дисциплины обучающимися при помощи учебных печатных и электронных изданий;

- информационно-коммуникационные технологии в институте имеются специализированные помещения для самостоятельной работы, оборудованные персональными компьютерами с выходом в Интернет и с доступом к электроннобиблиотечной системе;
 - интерактивный глоссарий по теоретической механике;
- методические указания (в том числе в электронной форме) по различным разделам дисциплины.

Самостоятельная работа студентов проводится под руководством преподавателей, с оказанием консультаций и помощи при подготовке к контрольным работам, выполнении домашних заланий

Фонд оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представ-

лена в следующей таблице:

№ п/п	Наименование контролируемых разделов (темы)	Код и наименование индикатора достижения компетенций Входной контроль	Наименование оценочного средства
1	Входной контроль	Входной контроль	Вопросы входного контроля (устно)
	Аттеста	ция разделов, текущий контроль	успеваемости
1	Статика	3-УКЕ-1, У-УКЕ-1, В-УКЕ-1	Разноуровневые задачи и задания Расчетно-графические задания Устный опрос в форме собеседования.
2	Кинематика	3-УКЕ-1, У-УКЕ-1, В-УКЕ-1, 3-ОПК-2, У-ОПК-2, В-ОПК-2	Разноуровневые задачи и задания Расчетно-графические задания Устный опрос в форме собеседования.
3	Динамика	3-УКЕ-1, У-УКЕ-1, В-УКЕ-1, 3-ОПК-2, У-ОПК-2, В-ОПК-2	Разноуровневые задачи и задания Расчетно-графические задания Устный опрос в форме собеседования.
		Промежуточная аттестация	
1	Экзамен	УКЕ-1, ОПК-2	Вопросы к экзамену (устно)

Входной контроль предназначен для выявления пробелов в знаниях студентов и готовности их к получению новых знаний. Оценочные средства для входного контроля представляют собой вопросы, которые задаются студентам в устной форме.

Вопросы к собеседованию Математика

- 1. Теорема Пифагора.
- 2. Теорема о длине диагонали прямоугольного параллелепипеда.
- 3. Теорема синусов.
- 4. Теорема косинусов.
- 5. Длина окружности. Длина дуги окружности.
- 6.Площади простейших фигур.
- 7.Объемы простейших тел.
- 8. Вектор. Сложение векторов. Умножение вектора на число.
- 9. Проекция вектора на ось. Основные теоремы о проекциях.
- 10.Скалярное произведение двух векторов. 11.Векторное произведение двух векторов.

- 12. Прямоугольная декартова система координат. Полярная система координат. Цилиндрическая система координат. Формулы перехода от одной системы координат к другой.
 - 13. Действия над векторами, заданными своими координатами.
 - 14. Производная функции. Таблица производных.
- 15. Правила вычисления производной (постоянной величины, суммы, произведения, дроби, сложной функции, параметрически заданной функции).
 - 16. Неопределенный интеграл. Таблица интегралов.
- 17.Основные свойства неопределенного интеграла (интеграл дифференциала, дифференциал интеграла, производная интеграла, интеграл суммы).
 - 18.Определенный интеграл. Формула Ньютона-Лейбница.
 - 19. Кратные интегралы.
 - 20. Криволинейный интеграл 1-го и 2-го рода.
 - 21. Дифференциальные уравнения. Порядок уравнения.
 - 22. Общее решение (интеграл) обыкновенного дифференциального уравнения.
- 23. Частное решение обыкновенного дифференциального уравнения. Задача Коши. Теорема о существовании и единственности решения задачи Коши.
 - 24.Основные виды дифференциальных уравнений и методы их решения.

Физика

- 25. Система отсчета. Понятие скорости и ускорения точки.
- 26. Угловая скорость и угловое ускорение твердого тела.
- 27. Первый закон Ньютона. Инерциальные системы отсчета.
- 28. Второй закон Ньютона. Инертность материальных тел.
- 29. Третий закон Ньютона.
- 30. Неинерциальные системы отсчета. Силы инерции.
- 31. Закон всемирного тяготения. Сила тяжести и вес тела.
- 32. Трение. Сила трения. Закон Амонтона-Кулона.
- 33. Механическая система. Внешние и внутренние силы. Изолированная система.
- 34. Закон сохранения импульса.
- 35. Энергия, работа, мощность.
- 36. Закон сохранения энергии.
- 37. Удар абсолютно упругих и неупругих тел.
- 38. Момент инерции твердого тела относительно оси.
- 39. Закон сохранения момента импульса.
- 40. Деформации твердого тела. Закон Гука.
- 41. Давление в жидкости и газе. Закон Паскаля. Закон Архимеда.
- 42. Движение тел в жидкостях и газах. Лобовое сопротивление. Подъемная сила.

Начертательная геометрия и инженерная графика

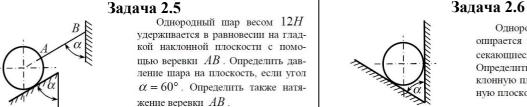
- 43. Метод проекций. Прямоугольное проецирование.
- 44. Проецирование отрезка прямой. Способ прямоугольного треугольника.
- 45. Взаимное положение прямой и плоскости. Угол между прямой и плоскостью.
- 46. Подобие. Центральная и зеркальная симметрия.
- 47. Построение проекций окружности.
- 48.Винтовая линия.
- 49. Поверхности и тела вращения.
- 50. Аксонометрические проекции.

Оценочные средства для текущего контроля

Текущий контроль — это непрерывно осуществляемый мониторинг уровня усвоения знаний и формирования умений и навыков в течение семестра. Текущий контроль знаний, умений и навыков студентов осуществляется в ходе учебных (аудиторных) занятий, проводимых по расписанию. Формами текущего контроля являются выполнение контрольных работ и домашних расчетно-графических заданий.

В качестве оценочного средства аттестации раздела используются устный опрос, итоговая контрольная работа.

Для промежуточной аттестации предусмотрены экзаменационные вопросы и практические задания.


Вариант задания контрольной работы определяется в соответствии с последними цифрами зачетной книжки студентами, которые являются шифром, по таблице для контрольных работ.

Раздел 1

Для контроля качества знаний студентов по разделу 1 выполняются 3 расчетнографические задания, проводится контрольная работа по разделу и устный опрос. Комплекты задач к выполнению расчетно-графических задания приведены в методических указаниях к выполнению самостоятельной работы и выдаются на практических занятиях.

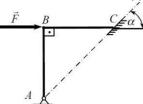
Пример комплекта задач по разделу 1 Тема 2 Задачи репродуктивного уровня Задача 2.1 Задача 2.2 Шарнирный трёхзвенник *АВС* Определить модуль силы \vec{F}_3 удерживает в равновесии груз, подвешеннатяжения троса BC и натяжение ный к шарнирному болту C. Вес груза троса AC - \vec{F}_2 . В положении Q = 6.7H. Заданы углы $\alpha = 60^{\circ}$ и равновесия углы $\alpha = 30^{\circ}$ и $\beta = 45^{\circ}$. Считая стержни AC и BC $\beta = 75^{\circ}$, сила $F_1 = 10H$. невесомыми, определить усилие в стерж- $Q_{\text{нях}}$ AC и BC. Задача 2.3 Задача 2.4 Два невесомых стержня AC и Определить BC соединены в точке C и шарнирно реакцию стержня AC, удерживающеприкреплены к полу. К шарниру С го в равновесии груз 1 весом подвешен груз P. Определить реак-14 Н с помощью цепи, намоцию стержня BC, если усилие в танной на барабан D и пере-

Задачи реконструктивного уровня

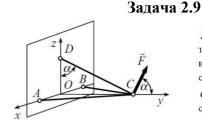
стержне AC равно 43H, углы $\alpha=60^{\circ}$, $\beta=30^{\circ}$. Определить так-

же вес груза P.

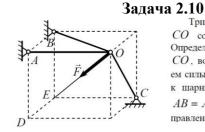
Однородный шар весом 40Hопирается на две плоскости, пересекающиеся под углом $\alpha = 60^{\circ}$. Определить давление шара на наклонную плоскость и на вертикаль-


кинутой через блок ${\it C}$, если угол $\alpha = 30^{\circ}$. Определить

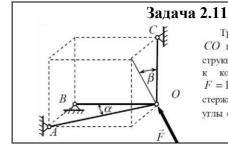
также усилие в стержне BC .



Вес однородной горизонтальной балки AB равен 180 H. Задан угол $\alpha = 45^{\circ}$ Определить реакции шарнираA и шарнира B .

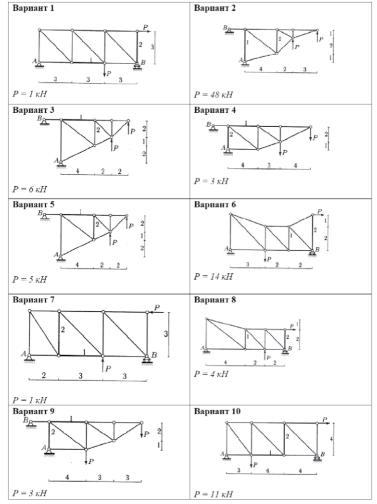


Изогнутый стержень АВС прикреплен к полу посредством шарнира A, а другой его конец C свободно опирается на гладкую плоскость, образующую угол $\alpha = 45^{\circ}$ с горизонтом. Определить реакции шарнира и плоскости, если на стержень действует сила F = 10H.


Задачи творческого уровня

Три стержня AC, BC и DC соединены шарнирно в точке C. Определить усилие в стержне DC, если заданы сила F = 50H и угол lpha = 60° . Сила \vec{F} находится в плоскости yOz.

Три стержня AO, BO и СО соединены в шарнире О. Определить реакцию стержня СО, возникающую под действием силы F = 12H, приложенной к шарниру O, если расстояния AB = AO = AD . Сила \vec{F} направлена по ОЕ.


Три стержня AO, BO и CO шарнирно-стержневой конструкции соединены в точке O, к которой приложена сила F=18H. Определить усилия в стержнях AO, OC и OB, если утлы $\alpha=30^\circ,\beta=45^\circ$.

Шкала оценивания задач по разделу 1

Процент выполне- ния Уровень	84-100 % заданий	66-83 % заданий	50-65 % заданий	0-50 % заданий	Баллы рейтинговой оценки
Задачи репродуктивного уровня	0,75-1	0,5-0,75	0,25-0,5	0-0,25	0-1
Задачи реконструктивного уровня	1-1,5	0,75-1	0,5-0,75	0-0,5	0-1,5
Задачи творческого уровня	2-2,5	1,5-2	0,75-1,5	0-0,75	0-2,5
		,		Итого	0-5

Пример задания к расчетно-графическим заданиям по разделу 1 РГЗ С1. Определение усилий в стержнях плоской фермы (тема 2)

Задана схема расчетная плоской фермы. Размеры даны в метрах. Требуется определить реакции опор и усилия во всех стержнях фермы.

Шкала оценивания расчетно-графических заданий по разделу 1

№ работы	Баллы рейтинговой оценки
C1	2
C2	2
C3	1
Итого	5

Вопросы к собеседованию по разделу 1

- 1.Статика как раздел теоретической механики. Основные понятия статики (равновесие тела, сила, линия действия силы, система сил, свободное тело, эквивалентные системы сил, равнодействующая системы сил, уравновешенная система сил, уравновешивающая сила). Две основные задачи статики.
 - 2. Аксиомы статики и их следствия.
- 3.Понятия несвободного тела и связей. Разделение сил на активные силы и реакций связей. Аксиома (принцип) освобождаемости. Основные виды связей и их реакции.
- 4. Система сходящихся сил. Теорема о равнодействующей системы сходящихся сил. Геометрический и алгебраический способы определения равнодействующей.
- 5.Условия равновесия системы сходящихся сил. Геометрическая и алгебраическая формы условий равновесия системы сходящихся сил.
 - 6. Теорема о равновесии трех непараллельных сил.
 - 7. Сложение двух параллельных сил.
 - 8.Пара сил. Момент пары (как вектор).
 - 9. Теоремы об эквивалентности и сложении пар и их следствия.
 - 10. Теорема о приведении системы пар к простейшему виду.
 - 11. Условие равновесия системы пар.
 - 12. Момент силы относительно точки (как вектор).
 - 13. Взаимосвязь момента пары и моментов сил пары относительно произвольной точки.
- 14. Лемма о параллельном переносе силы (лемма Пуансо о приведении силы к данному центру).
- 15.Понятия главного вектора и главного момента системы сил. Аналитический способ определения главного вектора и главного момента системы сил.
- 16.Основная теорема статики (теорема Пуансо о приведении системы сил к данному центру).
 - 17. Частные случаи приведения произвольной системы сил.
 - 18. Условия равновесия произвольной системы сил (теорема).
 - 19. Теорема Вариньона о моменте равнодействующей системы сил относительно точки.
- 20.Понятие плоской системы сил. Приведение произвольной плоской системы сил к простейшему виду. Основные свойства плоской системы сил.
 - 21. Момент силы относительно точки (как алгебраическая величина).
 - 22. Момент пары (как алгебраическая величина).
- 23. Условия равновесия произвольной плоской системы сил. Уравнения равновесия произвольной плоской системы сил (три формы).
 - 24. Условие равновесия рычага.
 - 25. Условие устойчивости твердого тела при опрокидывании. Коэффициент устойчивости.
 - 26. Понятие трения, виды трения. Законы трения скольжения.
 - 27. Реакции неидеальных (шероховатых) связей. Угол трения. Конус трения.
 - 28. Равновесие при наличии трения скольжения.
 - 29. Трение качения. Равновесие при наличии трения качения.
 - 30. Понятие момента силы относительно оси.
- 31.Взаимосвязь момента силы относительно оси и момента силы относительно точки на этой оси.
- 32. Аналитическое определение главного вектора и главного момента пространственной системы сил.
 - 33. Уравнения равновесия произвольной пространственной системы сил.
 - 34. Теорема Вариньона о моменте равнодействующей системы сил относительно оси.
- 35.Понятие системы параллельных сил. Теорема о равнодействующей системы параллельных и одинаково направленных сил.

- 36.Понятие центра системы параллельных сил (теорема). Формулы для вычисления координат центра системы параллельных сил.
- 37. Равнодействующая сил тяжести твердого тела. Понятие центра тяжести твердого тела. Формулы для вычисления координат центра тяжести тела.
- 38.Определение координат центра тяжести однородного твердого тела (центр тяжести объема, площади, линии).
- 39.Способы определения положения центров тяжести тел (интегрирование, симметрия, разбиение, способ отрицательных весов, экспериментальный способ).

Шкала оценивания обучающегося на собеседовании по разделу 1

шкала оценивания обучающегося на собеседовании по разделу 1	Г
V	Баллы
Уровень освоения материала	рейтинговой
	оценки
Теоретическое содержание дисциплины освоено полностью, без пробелов, необ-	9-10
ходимые практические навыки работы с материалом полностью сформированы.	
Обучающийся исчерпывающе, последовательно, четко и логически стройно из-	
лагает материал, умеет тесно увязывать теорию с практикой, владеет разносто-	
ронними навыками и приемами выполнения практических задач, причем не за-	
трудняется с ответом при видоизменении заданий.	
Теоретическое содержание дисциплины освоено практически полностью, обу-	7-8
чающийся грамотно и по существу излагает материал, не допуская существен-	
ных неточностей, правильно применяет теоретические положения при решении	
практических вопросов и задач, владеет необходимыми навыками и приемами	
их выполнения.	
Теоретическое содержание дисциплины освоено частично, обучающийся имеет	4-6
знания только основного материала, допускает неточности, недостаточно пра-	
вильные формулировки, нарушения логической последовательности в	
изложении материала, но пробелы не носят существенного характера, необходи-	
мые практические навыки работы с освоенным материалом в основном сформи-	
рованы, однако обучающийся испытывает затруднения при решении практиче-	
ских задач.	
Теоретическое содержание дисциплины освоено частично, обучающийся допус-	0-3
кает существенные ошибки, не видит взаимосвязи теории с практикой, необхо-	
димые практические навыки работы не сформированы, большинство предусмот-	
ренных рабочей программой дисциплины учебных заданий не выполнено.	
Необходима дополнительная самостоятельная работа над материалом курса.	

Раздел 2

Для контроля качества знаний студентов по разделу 2 выполняются 4 расчетнографические задания, проводится контрольная работа по разделу и устный опрос. Комплекты задач к выполнению расчетно-графических заданий приведены в методических указаниях к выполнению самостоятельной работы и выдаются на практических занятиях.

Пример комплекта задач по разделу 2

Тема 9					
Задачи репродуктивного уровня					
Задача 9.1	Задача 9.2				
	Точка движется по прямой с постоянным				
Определить скорость в ближайший после нача-	ускорением $a = 0.3 \text{ м/c}^2$. Определить начальную				
ла движения момент времени t , когда коорди-	скорость точки, если через 6 секунд после начала				
ната $x = 0.5$ м. Определить ускорение точки в	движения скорость точки стала равной 3 м/с.				
этот момент времени.					

Задача 9.3

Точка движется по прямой с ускорением a =рость точки $v_0 = 0$. Какова будет скорость точки возросла с 3 до 5 км/с? в этот момент времени?

Задача 9.5

времени, когда точка пересечет ось Определить также скорость точки в этот 0. момент времени.

Задача 9.7

Даны проекции вектора скорости точки на координатные оси: $v_x = 3t$, $v_y = 2t^2$, $v_z = t^3$. Определить модуль вектора ускорения в момент времени $t_1 = 1$ с и его направление (направляющие косинусы). Расстояния даны в метрах, время - в секундах.

Задача 9.9

Положение точки на плоскости определяется её радиус-вектором $\overline{r} = 0.3t^2\overline{t} + 0.1t^3j$. Определить модуль вектора ускорения точки в момент времени $t_1 = 2$ с и его направление (по направляющим косинусам). Расстояния даны в метрах, время – в секундах.

Задача 9.4

Сколько секунд должен работать двигатель, 0,5 м/с². Определить, за какое время будет который сообщает ракете ускорение 3g, чтобы пройдено расстояние 9 м, если при $t_0 = 0$ ско- скорость ракеты в прямолинейном движении

Задача 9.6

Заданы уравнения движения точки x = 2t, $y = | \Pi$ роекция вектора скорости точки на ось $x v_x = 1$ $1 - \sin(0,1t)$. Определить ближайший момент $|2\cos(\pi t)|$. Определить координату x_1 точки в мо-*Ox.* мент времени $t_1 = 1$ с, при $t_0 = 0$ координата $x_0 = 0$

Задача 9.8

Даны уравнения движения точки: $x = 0.3t^3$, $y = 2t^2$. Определить, в какой момент времени t ускорение точки равно 7 см/с². Определить также скорость точки в этот момент времени. Координаты х и у заданы в сантиметрах, время – в секундах.

Задача 9.10

Точка движется по окружности согласно уравнению $s = 0.5t^2 + 4t$. Найти полное ускорение точки в момент времени, когда её скорость достигнет 10 м/с . Радиус окружности R = 1 м.

Задачи реконструктивного уровня

Задача 9.11

Касательное ускорение точки $a_{\tau} = 0.2t$. Опреточка за это время?

Задача 9.12

Точка движется по окружности согласно закоделить момент времени t_1 , когда скорость v точ- ну $s = 5t - 0.4t^2$. Определить момент времени t_1 , ки достигнет величины 10 м/с, если при $t_0 = 0$ при котором нормальное ускорение точки $a_n = 0$, скорость точки $v_0 = 2$ м/с. Какой путь пройдет а также величину полного ускорения для этого момента времени.

Задачи творческого уровня

Задача 9.13

Дан закон движения точки по траектории: s =

Задача 9.14

По окружности, радиус которой r = 7 м, дви-5t. Определить радиус кривизны траектории в жется точка согласно закону $s = 0.3t^2$. Определить момент времени t_1 , при котором нормальное момент времени t_1 , при котором нормальное ускорение точки $a_n = 3$ м/c², а также величину ускорение точки $a_n = 1.5$ м/c², а также величину полного ускорения точки в этот момент време- полного ускорения точки в этот момент времени.

Шкала оценивания задач по разделу 2

Процент выполне- ния Уровень	84-100 % заданий	66-83 % заданий	50-65 % заданий	0-50 % заданий	Баллы рейтинговой оценки
Задачи репродуктивного уровня	0,75-1	0,5-0,75	0,25-0,5	0-0,25	0-1
Задачи реконструктивного уровня	1-1,5	0,75-1	0,5-0,75	0-0,5	0-1,5
Задачи творческого уровня	2-2,5	1,5-2	0,75-1,5	0-0,75	0-2,5
				Итого	0-5

Пример задания к расчетно-графическим заданиям по разделу 2 РГЗ К1. Определение скорости и ускорения точки по заданным уравнениям ее движения (тема 9)

По заданным уравнениям движения точки M требуется установить вид ее траектории и для момента времени $t = t_1$ (c) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Номер	Уравнения	Время t_1 , с	
варианта	x = x(t),cM	y = y(t), cm	
1	$-2t^2+3$	-5t	0,5
2	$4\cos^2(\pi t/3)+2$	4cos²(πt/3)+2	1
3	$-\cos(\pi t^2/3)+3$	$\sin(\pi t^2/3) - 1$	1
4	4t+4	-4/(t+1)	2
5	$2\sin(\pi t/3)$	$-3\cos(\pi t/3)+4$	1
6	3t ² +2	−14t	0,5
7	$3t^2-t+1$	$5t^2 - 5t/3 - 2$	1
8	$7\sin(\pi t^2/6) + 3$	$2-7\cos(\pi t^2/6)$	1
9	-3/(t+2)	3t+6	2
10	$-4\cos(\pi t/3)$	$-2\sin(\pi t/3)-3$	1

Шкала оценивания расчетно-графических заданий по разделу 2

№ работы	Баллы рейтинговой оценки		
K1	1		
К2	1		
К3	1		
K4	2		
Итого	5		

Вопросы к собеседованию по разделу 2

- 1. Кинематика как раздел теоретической механики. Основные понятия кинематики (система отсчета, траектория точки, прямолинейное и криволинейное движения точки, равномерное и неравномерное движения точки, скорость точки, ускорение точки). Основные задачи кинематики.
 - 2. Способы задания движения точки: векторный, координатный, естественный.
 - 3. Определение скорости и ускорения точки при векторном способе задания движения.
 - 4. Определение скорости и ускорения точки при координатном способе задания движения.
- 5.Определение скорости и ускорения точки при естественном способе задания движения. Естественная система координат (касательная, нормаль, бинормаль и их орты) и естественный трехгранник (соприкасающаяся, нормальная и спрямляющая плоскости). Центр и радиус кривизны траектории.
- 6. Классификация движений точки по её ускорениям (прямолинейное, прямолинейное равномерное, прямолинейное равнопеременное, криволинейное равнопеременное, криволинейное равнопеременное).
- 7. Поступательное движение твердого тела. Теорема о поступательном движении тела. Задание поступательного движения тела. Уравнение поступательного движения тела.
- 8.Вращательное движение твердого тела. Угол поворота тела. Задание вращательного движения тела. Уравнение вращательного движения твердого тела.
- 9.Угловая скорость и угловое ускорение тела (как алгебраические величины), совершающего вращательное движение.
- 10. Частные случаи вращательного движения тела (равномерное и равнопеременное вращение). Формулы для вычисления угловой скорости и угла поворота.
 - 11.Определение скорости и ускорения точки тела, совершающего вращательное движение.
 - 12.Псевдовекторы угловой скорости и углового ускорения тела.
 - 13. Векторные выражения для скорости, вращательного и центростремительного ускоре-

ний точки вращающегося тела.

- 14.Плоское движение твердого тела. Свойства плоского движения. Задание плоского движения тела (плоской фигуры). Уравнения плоского движения тела (плоской фигуры). Разложение движения плоской фигуры на поступательное движение вместе с полюсом и вращение вокруг полюса.
 - 15. Теорема о скоростях точек плоской фигуры и её следствия.
- 16.Понятие мгновенного центра скоростей плоской фигуры и теорема о его существовании и единственности.
- 17. Применение мгновенного центра скоростей к определению скоростей точек плоской фигуры.
 - 18. Различные случаи определения положения мгновенного центра скоростей.
 - 19. Теорема об ускорениях точек плоской фигуры.
 - 20. Понятие мгновенного центра ускорений (МЦУ) плоской фигуры.
 - 21.Способы определения мгновенного центра ускорений плоской фигуры.
- 22.Сферическое движение твердого тела. Углы Эйлера. Уравнения сферического движения.
- 23. Мгновенная ось вращения. Уравнение мгновенной оси вращения твердого тела при сферическом движении. Угловая скорость и угловое ускорение тела.
- 24.Определение скоростей и ускорений точек тела при сферическом движении. Распределение скоростей точек тела при сферическом движении. Проекции скорости точки тела на оси декартовых координат.
- 25. Разложение движения свободного твердого тела на поступательное движение вместе с полюсом и сферическое движение вокруг полюса. Уравнения движения свободного тела. Независимость векторов угловой скорости и углового ускорения свободного тела от выбора полюса.
 - 26.Определение скоростей и ускорений точек свободного твердого тела.
- 27.Сложное движение точки. Относительное, переносное и абсолютное движения точки. Задание сложного движения точки.
 - 28. Теорема о сложении скоростей.
- 29. Теорема о сложении ускорений (теорема Кориолиса), кориолисово ускорение. Случаи отсутствия кориолисова ускорения.
 - 30.Сложение поступательных движений.
 - 31.Сложение вращений твердого тела вокруг параллельных осей. Пара вращений.
 - 32.Сложение вращений твердого тела вокруг пересекающихся осей.
 - 33.Сложение поступательного и вращательного движений. Винтовое движение.
 - 34.Общий случай сложения движений твердого тела.

Шкала оценивания обучающегося на собеседовании по разделу 2

mkasia odenibanim ooy iaiomeroen na cooceedobanim no pastesiy i	=
Уровень освоения материала	Баллы рейтинговой оценки
Теоретическое содержание дисциплины освоено полностью, без пробелов, необходимые практические навыки работы с материалом полностью сформирова-	9-10
ны. Обучающийся исчерпывающе, последовательно, четко и логически стройно	
излагает материал, умеет тесно увязывать теорию с практикой, владеет разно-	
сторонними навыками и приемами выполнения практических задач, причем не	
затрудняется с ответом при видоизменении заданий.	
Теоретическое содержание дисциплины освоено практически полностью, обу-	7-8
чающийся грамотно и по существу излагает материал, не допуская существен-	
ных неточностей, правильно применяет теоретические положения	
при решении практических вопросов и задач, владеет необходимыми навыками	
и приемами их выполнения.	
Теоретическое содержание дисциплины освоено частично, обучающийся имеет	4-6
знания только основного материала, допускает неточности, недостаточно пра-	
вильные формулировки, нарушения логической последовательности в изложе-	
нии материала, но пробелы не носят существенного характера, необходимые	
практические навыки работы с освоенным материалом в основном сформирова-	

ны, однако обучающийся испытывает затруднения при решении практических	
задач.	
Теоретическое содержание дисциплины освоено частично, обучающийся до-	0-3
пускает существенные ошибки, не видит взаимосвязи теории с практикой, необ-	
ходимые практические навыки работы не сформированы, большинство преду-	
смотренных рабочей программой дисциплины учебных заданий не выполнено.	
Необходима дополнительная самостоятельная работа над материалом курса.	

Раздел 3

Для контроля качества знаний студентов по разделу 3 выполняются 4 расчетнографические задания, проводится контрольная работа по разделу и устный опрос. Комплекты задач к выполнению расчетно-графических заданий приведены в методических указаниях к выполнению самостоятельной работы и выдаются на практических занятиях.

Пример комплекта задач по разделу 3 Тема 16 Задачи репродуктивного уровня Задача 16.1 Задача 16.2 Тело массой m = 50 кг, подвещенное на тросе, Деталь массой m = 0.5 кг скользит вниз по поднимается вертикально с ускорением a = 0.5 лотку. Под каким углом к горизонтальной плос- M/c^2 . Определить силу натяжения троса. кости должен располагаться лоток, для того чтобы деталь двигалась с ускорением $a = 2 \text{ m/c}^2$?

V, M/c

Задача 16.3

Скорость движения точки Определить равнодействующей действующих на точку.

дана графиком функции v = v(t). модуль сил,

Задача 16.5

Материальная точка массой m = 900 кг движется по горизонтальной прямой под действием силы F = 270t, которая направлена по той же прямой. Определить скорость точки в момент времени $t_1 = 10$ с, если при $t_0 = 0$ скорость $v_0 = 10 | 6$ м/с. м/с. Определить также путь, пройденный точкой за эти 10 с.

Задача 16.4

Угол выразить в градусах.

Материальная точка массой m = 16 кг двимассой m = 24 кг по прямой за- жется по окружности радиуса R = 9 м со скоростью v = 0.8 м/с. Определить проекцию равнодействующей сил, приложенных к точке, на главную нормаль к траектории.

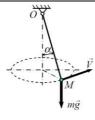
Задача 16.6

Определить путь, пройденный материальной точкой массой m по оси Ox за 1 с, если она движется под действием силы $F_x = 12mt^2$. В момент времени $t_0 = 0$ координата $x_0 = 3$ м скорость $v_0 =$

Задачи реконструктивного уровня

Материальная точка Mмассой т движется вдоль горизонтальной оси Ох под действием силы F = 2m(x +

1). Определить скорость и


Задача 16.7

На материальную точку массой m = 20 кг, которая движется по горизонтальной прямой, действует сила сопротивления $R = 0.2v^2$. За сколько секунд скорость точки уменьшится с 10 до 5 м/с? Какой путь пройдет точка за это

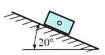
Задача 16.8

ускорение точки в момент времени, когда ее ко-время? ордината x = 0.5 м.

Задача 16.9

Определить скорость точки М конического маятника, который при длине нити OM = 1 м, описывает конус с углом при вершине а $=45^{\circ}$.

Задача 16.10


Материальная точка М массой т 6 кг перемещается в горизонтальной плоскости по криволинейной траектории под

действием силы F = 8 H. Определить касательное ускорение точки.

Задачи творческого уровня

Задача 16.11

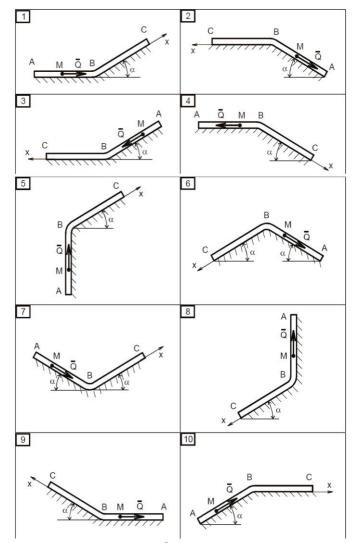
Тело массой m=20 кг падает по вертикали, сила сопротивления воздуха $R=0.04v^2$. Определить максимальную скорость падения тела.

Задача 16.12

По наклонной плоскости из состояния покоя начинает скользить тело массой m=1 кг. Определить максимальную

скорость тела, если сила сопротивления движению R = 0.08v.

Пример задания к расчетно-графическим заданиям по разделу 3 РГЗ Д1.


Интегрирование дифференциальных уравнений движения материальной точки (тема 17)

Материальная точка M массой m, получив в точке A начальную скорость v_0 , движется в изогнутой трубе ABC, расположенной в вертикальной плоскости. Участки трубы или оба наклонные, или один горизонтальный, а другой наклонный. Угол наклона трубы $\alpha = 30^\circ$. На участке AB на материальную точку действует сила тяжести P, постоянная сила Q (ее направление указано на рисунке) и сила сопротивления среды R, зависящая от скорости v груза и направленная против движения. Трением груза о трубу на участке AB пренебречь.

В точке B материальная точка, не изменяя величины своей скорости, переходит на участок BC трубы, где на нее действует сила тяжести P, сила трения (коэффициент трения груза о трубу f = 0,2) и переменная сила F, проекция которой F_x на ось x дана в таблице.

Известно расстояние AB = l или время и движения от точки A до точки B. Требуется найти закон движения материальной точки на участке BC: $\mathbf{r} = \mathbf{r}(t)$

закон движ	ения мате	ериальнои	точки на	участке	BC: x = x	$\mathcal{C}(I)$.			
№ ва-	Рис.	m	V_0 ,	Q,	R,	μ	1,	t_1 ,	F_X ,
рианта		(кг)	M/c	H	H		M	c	H
1	1	4,5	18	9	μV	0,45	-	5	3sin2t
2	2	3	32	4	μV^2	0,8	2,5	i=	-8cos4t
3	3	2	2	2	μV	0,4	_	2,5	2sin4t
4	4	6	14	18	μV^2	0,6	5	8-	-3cos2t
5	5	1,6	18	4	μV	0,4		2	4cos4t
6	6	1,2	22	2	μV^2	0,8	0,5). -	6t
7	7	2	5	2	μV	0,4	-	2,5	2sin4t
8	8	2,4	12	6	μV^2	0,48	1,5	n=	6t
9	9	1,8	15	6	μV	0,3	_	3	9t ²
10	10	4	12	12	μV^2	0,8	2,5	-	-8cos4t

Шкала оценивания расчетно-графических заданий по разделу 3

№ работы	Баллы рейтинговой оценки		
Д1	2		
Д2	2		
ДЗ	2		
Д4	2		
Итого	8		

Вопросы к собеседованию по разделу 3

- 1. Динамика как раздел теоретической механики. Основные понятия динамики (пространство и время, материальное тело, сила, инертность тела, масса тела, материальная точка, система отсчета).
- 2.Законы динамики (Галилея-Ньютона) материальной точки. Понятие инерциальной системы отсчета.
 - 3. Две основные задачи динамики точки.
 - 4.Основные виды сил.
- 5. Дифференциальные уравнения движения свободной точки (в векторной, координатной и естественной форме).
 - 6.Порядок решения прямой задачи динамики точки.
 - 7. Решение обратной (основной) задачи динамики точки при прямолинейном движении.
 - 8. Решение обратной задачи динамики при криволинейном движении точки.
- 9.Несвободное движение материальной точки. Основное уравнение динамики несвободной точки. Движение точки по заданной неподвижной кривой.
- 10.Относительное движение точки. Понятие переносной и кориолисовой сил инерции точки.
 - 11. Влияние вращения Земли на равновесие и движение тел.

- 12.Свободные колебания точки.
- 13.Свободные колебания точки при наличии трения скольжения.
- 14. Свободные колебания точки при линейно-вязком сопротивлении. Апериодическое движение точки.
 - 15.Вынужденные колебания точки.
- 16.Вынужденные колебания точки при наличии линейно-вязкого сопротивления среды. Апериодическое движение точки.
 - 17. Явление биений. Явление резонанса.
- 18. Механическая (материальная) система. Классификация сил, действующих на механическую систему. Основные свойства внутренних сил.
 - 19. Дифференциальные уравнения движения механической системы.
- 20.Масса механической системы. Центр масс механической системы. Формулы для вычисления координат центра масс системы.
- 21. Момент инерции механической системы и твердого тела относительно оси. Радиус инерции. Вычисление моментов инерции простейших тел.
- 22. Теорема о моментах инерции относительно параллельных осей (теорема Гюйгенса-Штейнера).
- 23. Центробежные моменты инерции. Эллипсоид инерции. Главные оси и главные моменты инерции.
- 24.Вычисление момента инерции твердого тела относительно произвольной оси. Понятие о тензоре инерции.
- 25. Теорема о движении центра масс механической системы. Следствия, закон сохранения движения центра масс.
- 26. Количество движения материальной точки. Элементарный импульс силы. Импульс постоянной и переменной силы за данный промежуток времени. Теорема об импульсе равнодействующей.
- 27. Теорема об изменении количества движения материальной точки (в дифференциальной и интегральной форме).
- 28.Количество движения механической системы. Теорема об изменении количества движения механической системы (в дифференциальной и интегральной форме). Следствия, закон сохранения количества движения механической системы.
 - 29. Момент количества движения материальной точки.
 - 30. Теорема об изменении момента количества движения материальной точки.
 - 31. Кинетический момент механической системы.
- 32. Теорема об изменении кинетического момента механической системы (теорема моментов). Следствия, закон сохранения кинетического момента механической системы, необходимые условия равновесия любой механической системы.
 - 33. Работа постоянной силы на прямолинейном перемещении.
- 34. Работа переменной силы (общий случай). Вычисление работы через криволинейный интеграл I рода.
 - 35. Элементарная работа силы. Вычисление работы через криволинейный интеграл II рода.
 - 36. Теорема о работе равнодействующей.
- 37. Работа постоянной силы трения. Работа силы тяжести. Работа силы упругости. Элементарные сведения об идеальных связях. Работа реакции идеальной связи.
 - 38. Мощность силы. Коэффициент полезного действия машины.
- 39. Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии материальной точки (в дифференциальной и интегральной форме).
 - 40. Кинетическая энергия механической системы и способы её вычисления.
 - 41. Вычисление кинетической энергии твердого тела в различных случаях его движения.
- 42. Работа и мощность сил, приложенных к твердому телу, при поступательном и вращательном движениях.
 - 43. Работа сил тяжести механической системы и твердого тела.
 - 44. Работа внутренних сил твердого тела.
- 45. Теорема об изменении кинетической энергии механической системы. Теорема об изменении кинетической энергии твердого тела. Случай механической системы с не изменяющимися со временем идеальными связями.

- 46.Потенциальная энергия. Вычисление потенциальной энергии механической системы и твердого тела.
 - 47. Закон сохранения полной механической энергии системы.
 - 48. Дифференциальные уравнения поступательного движения твердого тела.
 - 49. Дифференциальное уравнение вращательного движения твердого тела.
 - 50. Дифференциальные уравнения плоского движения твердого тела.
 - 51. Дифференциальные уравнения сферического движения твердого тела.
 - 52. Дифференциальные уравнения движения свободного твердого тела.
- 53.Сила инерции материальной точки (по Даламберу). Центробежная и касательная составляющие силы инерции. Принцип Даламбера для точки.
 - 54. Принцип Даламбера для механической системы.
- 55. Приведение сил инерции механической системы (главный вектор и главный момент сил инерции механической системы).
 - 56. Приведение сил инерции твердого тела в различных случаях его движения.
- 57. Динамические реакции, действующие на ось вращающегося тела. Случай вращения твердого тела вокруг его главной центральной оси инерции. Уравновешивание вращающихся тел.
- 58.Основные понятия и определения теории удара. Основное уравнение теории удара. Допущения теории удара.
 - 59.Общие теоремы теории удара.
 - 60. Удар шара о неподвижную поверхность. Коэффициент восстановления.
 - 61. Прямой центральный удар двух тел. Предельные случаи.
 - 62.Потеря кинетической энергии при неупругом ударе двух тел. Теорема Карно.
 - 63. Удар по телу, имеющему неподвижную ось вращения. Центр удара.
 - 64.Связи и их уравнения. Классификация связей.
- 65.Возможные (виртуальные) перемещения голономной системы. Число степеней свободы голономной системы. Принцип возможных перемещений.
- 66. Принцип возможных перемещений в случае движения системы. Общее уравнение динамики.
 - 67.Обобщенные координаты и обобщенные скорости механической системы.
 - 68.Обобщенные силы. Общее уравнение динамики в обобщенных силах.
 - 69. Условия равновесия системы в обобщенных координатах.
 - 70.Определение обобщенных сил в системах с одной и двумя степенями свободы.
- 71. Дифференциальные уравнения движения механической системы в обобщенных координатах (уравнения Лагранжа второго рода). Кинетический потенциал.

Шкала оценивания обучающегося на собеседовании по разделу 3

Уровень освоения материала	Баллы рейтинговой оценки
Теоретическое содержание дисциплины освоено полностью, без пробелов, необходимые практические навыки работы с материалом полностью сформированы. Обучающийся исчерпывающе, последовательно, четко и логически стройно излагает материал, умеет тесно увязывать теорию с практикой, владеет разносторонними навыками и приемами выполнения практических задач, причем не затрудняется с ответом при видоизменении заданий.	9-10
Теоретическое содержание дисциплины освоено практически полностью, обучающийся грамотно и по существу излагает материал, не допуская существенных неточностей, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.	7-8
Теоретическое содержание дисциплины освоено частично, обучающийся имеет знания только основного материала, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении материала, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, однако обучающийся испытывает затруднения при решении практическое содержанием практическое навыки работы с освоенным материалом в основном сформированы, однако обучающийся испытывает затруднения при решении практическое содержанием	4-6

тических задач.	
Теоретическое содержание дисциплины освоено частично, обучающийся до-	0-3
пускает существенные ошибки, не видит взаимосвязи теории с практикой, не-	
обходимые практические навыки работы не сформированы, большинство	
предусмотренных рабочей программой дисциплины учебных заданий не вы-	
полнено. Необходима дополнительная самостоятельная работа над материалом	
курса.	

Оценочные средства для промежуточной аттестации Вопросы к экзамену

- 1.Статика как раздел теоретической механики. Основные понятия статики (равновесие тела, сила, линия действия силы, система сил, свободное тело, эквивалентные системы сил, равнодействующая системы сил, уравновешенная система сил, уравновешивающая сила). Две основные задачи статики.
 - 2. Аксиомы статики и их следствия.
- 3. Понятия несвободного тела и связей. Разделение сил на активные силы и реакций связей. Аксиома (принцип) освобождаемости. Основные виды связей и их реакции.
- 4. Система сходящихся сил. Теорема о равнодействующей системы сходящихся сил. Геометрический и алгебраический способы определения равнодействующей.
- 5. Условия равновесия системы сходящихся сил. Геометрическая и алгебраическая формы условий равновесия системы сходящихся сил.
 - 6. Теорема о равновесии трех непараллельных сил.
 - 7. Сложение двух параллельных сил.
 - 8.Пара сил. Момент пары (как вектор).
 - 9. Теоремы об эквивалентности и сложении пар и их следствия.
 - 10. Теорема о приведении системы пар к простейшему виду.
 - 11. Условие равновесия системы пар.
 - 12. Момент силы относительно точки (как вектор).
 - 13. Взаимосвязь момента пары и моментов сил пары относительно произвольной точки.
- 14. Лемма о параллельном переносе силы (лемма Пуансо о приведении силы к данному центру).
- 15.Понятия главного вектора и главного момента системы сил. Аналитический способ определения главного вектора и главного момента системы сил.
- 16.Основная теорема статики (теорема Пуансо о приведении системы сил к данному центру).
 - 17. Частные случаи приведения произвольной системы сил.
 - 18. Условия равновесия произвольной системы сил (теорема).
 - 19. Теорема Вариньона о моменте равнодействующей системы сил относительно точки.
- 20. Понятие плоской системы сил. Приведение произвольной плоской системы сил к простейшему виду. Основные свойства плоской системы сил.
 - 21. Момент силы относительно точки (как алгебраическая величина).
 - 22. Момент пары (как алгебраическая величина).
- 23. Условия равновесия произвольной плоской системы сил. Уравнения равновесия произвольной плоской системы сил (три формы).
 - 24. Условие равновесия рычага.
 - 25. Условие устойчивости твердого тела при опрокидывании. Коэффициент устойчивости.
 - 26. Понятие трения, виды трения. Законы трения скольжения.
 - 27. Реакции неидеальных (шероховатых) связей. Угол трения. Конус трения.
 - 28. Равновесие при наличии трения скольжения.
 - 29. Трение качения. Равновесие при наличии трения качения.
 - 30. Понятие момента силы относительно оси.
- 31.Взаимосвязь момента силы относительно оси и момента силы относительно точки на этой оси.
- 32. Аналитическое определение главного вектора и главного момента пространственной системы сил.
 - 33. Уравнения равновесия произвольной пространственной системы сил.

- 34. Теорема Вариньона о моменте равнодействующей системы сил относительно оси.
- 35.Понятие системы параллельных сил. Теорема о равнодействующей системы параллельных и одинаково направленных сил.
- 36.Понятие центра системы параллельных сил (теорема). Формулы для вычисления координат центра системы параллельных сил.
- 37. Равнодействующая сил тяжести твердого тела. Понятие центра тяжести твердого тела. Формулы для вычисления координат центра тяжести тела.
- 38.Определение координат центра тяжести однородного твердого тела (центр тяжести объема, площади, линии).
- 39.Способы определения положения центров тяжести тел (интегрирование, симметрия, разбиение, способ отрицательных весов, экспериментальный способ).
- 40. Кинематика как раздел теоретической механики. Основные понятия кинематики (система отсчета, траектория точки, прямолинейное и криволинейное движения точки, равномерное и неравномерное движения точки, скорость точки, ускорение точки). Основные задачи кинематики.
 - 41.Способы задания движения точки: векторный, координатный, естественный.
 - 42. Определение скорости и ускорения точки при векторном способе задания движения.
- 43.Определение скорости и ускорения точки при координатном способе задания движения
- 44.Определение скорости и ускорения точки при естественном способе задания движения. Естественная система координат (касательная, нормаль, бинормаль и их орты) и естественный трехгранник (соприкасающаяся, нормальная и спрямляющая плоскости). Центр и радиус кривизны траектории.
- 45.Классификация движений точки по её ускорениям (прямолинейное, прямолинейное равномерное, прямолинейное равнопеременное, криволинейное, криволинейное равнопеременное).
- 46.Поступательное движение твердого тела. Теорема о поступательном движении тела. Задание поступательного движения тела. Уравнение поступательного движения тела.
- 47. Вращательное движение твердого тела. Угол поворота тела. Задание вращательного движения тела. Уравнение вращательного движения твердого тела.
- 48.Угловая скорость и угловое ускорение тела (как алгебраические величины), совершающего вращательное движение.
- 49. Частные случаи вращательного движения тела (равномерное и равнопеременное вращение). Формулы для вычисления угловой скорости и угла поворота.
 - 50.Определение скорости и ускорения точки тела, совершающего вращательное движение.
 - 51. Псевдовекторы угловой скорости и углового ускорения тела.
- 52.Векторные выражения для скорости, вращательного и центростремительного ускорений точки вращающегося тела.
- 53.Плоское движение твердого тела. Свойства плоского движения. Задание плоского движения тела (плоской фигуры). Уравнения плоского движения тела (плоской фигуры). Разложение движения плоской фигуры на поступательное движение вместе с полюсом и вращение вокруг полюса.
 - 54. Теорема о скоростях точек плоской фигуры и её следствия.
- 55.Понятие мгновенного центра скоростей плоской фигуры и теорема о его существовании и единственности.
- 56. Применение мгновенного центра скоростей к определению скоростей точек плоской фигуры.
 - 57. Различные случаи определения положения мгновенного центра скоростей.
 - 58. Теорема об ускорениях точек плоской фигуры.
 - 59.Понятие мгновенного центра ускорений (МЦУ) плоской фигуры.
 - 60.Способы определения мгновенного центра ускорений плоской фигуры.
- 61.Сферическое движение твердого тела. Углы Эйлера. Уравнения сферического движения.
- 62.Мгновенная ось вращения. Уравнение мгновенной оси вращения твердого тела при сферическом движении. Угловая скорость и угловое ускорение тела.
- 63.Определение скоростей и ускорений точек тела при сферическом движении. Распределение скоростей точек тела при сферическом движении. Проекции скорости точки тела на оси

декартовых координат.

- 64. Разложение движения свободного твердого тела на поступательное движение вместе с полюсом и сферическое движение вокруг полюса. Уравнения движения свободного тела. Независимость векторов угловой скорости и углового ускорения свободного тела от выбора полюса.
 - 65.Определение скоростей и ускорений точек свободного твердого тела.
- 66.Сложное движение точки. Относительное, переносное и абсолютное движения точки. Задание сложного движения точки.
 - 67. Теорема о сложении скоростей.
- 68. Теорема о сложении ускорений (теорема Кориолиса), кориолисово ускорение. Случаи отсутствия кориолисова ускорения.
 - 69.Сложение поступательных движений.
 - 70. Сложение вращений твердого тела вокруг параллельных осей. Пара вращений.
 - 71. Сложение вращений твердого тела вокруг пересекающихся осей.
 - 72. Сложение поступательного и вращательного движений. Винтовое движение.
 - 73. Общий случай сложения движений твердого тела.
- 74. Динамика как раздел теоретической механики. Основные понятия динамики (пространство и время, материальное тело, сила, инертность тела, масса тела, материальная точка, система отсчета).
- 75. Законы динамики (Галилея-Ньютона) материальной точки. Понятие инерциальной системы отсчета.
 - 76. Две основные задачи динамики точки.
 - 77.Основные виды сил.
- 78. Дифференциальные уравнения движения свободной точки (в векторной, координатной и естественной форме).
 - 79. Порядок решения прямой задачи динамики точки.
 - 80. Решение обратной (основной) задачи динамики точки при прямолинейном движении.
 - 81. Решение обратной задачи динамики при криволинейном движении точки.
- 82. Несвободное движение материальной точки. Основное уравнение динамики несвободной точки. Движение точки по заданной неподвижной кривой.
- 83.Относительное движение точки. Понятие переносной и кориолисовой сил инерции точки.
 - 84. Влияние вращения Земли на равновесие и движение тел.
 - 85.Свободные колебания точки.
 - 86.Свободные колебания точки при наличии трения скольжения.
- 87. Свободные колебания точки при линейно-вязком сопротивлении. Апериодическое движение точки.
 - 88.Вынужденные колебания точки.
- 89.Вынужденные колебания точки при наличии линейно-вязкого сопротивления среды. Апериодическое движение точки.
 - 90. Явление биений. Явление резонанса.
- 91. Механическая (материальная) система. Классификация сил, действующих на механическую систему. Основные свойства внутренних сил.
 - 92. Дифференциальные уравнения движения механической системы.
- 93.Масса механической системы. Центр масс механической системы. Формулы для вычисления координат центра масс системы.
- 94. Момент инерции механической системы и твердого тела относительно оси. Радиус инерции. Вычисление моментов инерции простейших тел.
- 95. Теорема о моментах инерции относительно параллельных осей (теорема Гюйгенса-Штейнера).
- 96.Центробежные моменты инерции. Эллипсоид инерции. Главные оси и главные моменты инерции.
- 97.Вычисление момента инерции твердого тела относительно произвольной оси. Понятие о тензоре инерции.
- 98. Теорема о движении центра масс механической системы. Следствия, закон сохранения движения центра масс.
 - 99. Количество движения материальной точки. Элементарный импульс силы. Импульс по-

стоянной и переменной силы за данный промежуток времени. Теорема об импульсе равнодействующей.

- 100. Теорема об изменении количества движения материальной точки (в дифференциальной и интегральной форме).
- 101. Количество движения механической системы. Теорема об изменении количества движения механической системы (в дифференциальной и интегральной форме). Следствия, закон сохранения количества движения механической системы.
 - 102. Момент количества движения материальной точки.
 - 103. Теорема об изменении момента количества движения материальной точки.
 - 104. Кинетический момент механической системы.
- 105. Теорема об изменении кинетического момента механической системы (теорема моментов). Следствия, закон сохранения кинетического момента механической системы, необходимые условия равновесия любой механической системы.
 - 106. Работа постоянной силы на прямолинейном перемещении.
- 107. Работа переменной силы (общий случай). Вычисление работы через криволинейный интеграл I рода.
- 108. Элементарная работа силы. Вычисление работы через криволинейный интеграл II рода.
 - 109. Теорема о работе равнодействующей.
 - 110. Работа постоянной силы трения. Работа силы тяжести. Работа силы упругости.

Элементарные сведения об идеальных связях. Работа реакции идеальной связи.

- 111. Мощность силы. Коэффициент полезного действия машины.
- 112. Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии материальной точки (в дифференциальной и интегральной форме).
 - 113. Кинетическая энергия механической системы и способы её вычисления.
 - 114. Вычисление кинетической энергии твердого тела в различных случаях его движения.
- 115. Работа и мощность сил, приложенных к твердому телу, при поступательном и вращательном движениях.
 - 116. Работа сил тяжести механической системы и твердого тела.
 - 117. Работа внутренних сил твердого тела.
- 118. Теорема об изменении кинетической энергии механической системы. Теорема об изменении кинетической энергии твердого тела. Случай механической системы с не изменяющимися со временем идеальными связями.
- 119. Потенциальная энергия. Вычисление потенциальной энергии механической системы и твердого тела.
 - 120. Закон сохранения полной механической энергии системы.
 - 121. Дифференциальные уравнения поступательного движения твердого тела.
 - 122. Дифференциальное уравнение вращательного движения твердого тела.
 - 123. Дифференциальные уравнения плоского движения твердого тела.
 - 124. Дифференциальные уравнения сферического движения твердого тела.
 - 125. Дифференциальные уравнения движения свободного твердого тела.
- 126. Сила инерции материальной точки (по Даламберу). Центробежная и касательная составляющие силы инерции. Принцип Даламбера для точки.
 - 127. Принцип Даламбера для механической системы.
- 128. Приведение сил инерции механической системы (главный вектор и главный момент сил инерции механической системы).
 - 129. Приведение сил инерции твердого тела в различных случаях его движения.
- 130. Динамические реакции, действующие на ось вращающегося тела. Случай вращения твердого тела вокруг его главной центральной оси инерции. Уравновешивание вращающихся тел.
- 131. Основные понятия и определения теории удара. Основное уравнение теории удара. Допущения теории удара.
 - 132. Общие теоремы теории удара.
 - 133. Удар шара о неподвижную поверхность. Коэффициент восстановления.
 - 134. Прямой центральный удар двух тел. Предельные случаи.
 - 135. Потеря кинетической энергии при неупругом ударе двух тел. Теорема Карно.

- 136. Удар по телу, имеющему неподвижную ось вращения. Центр удара.
- 137. Связи и их уравнения. Классификация связей.
- 138. Возможные (виртуальные) перемещения голономной системы. Число степеней свободы голономной системы. Принцип возможных перемещений.
- 139. Принцип возможных перемещений в случае движения системы. Общее уравнение динамики.
 - 140. Обобщенные координаты и обобщенные скорости механической системы.
 - 141. Обобщенные силы. Общее уравнение динамики в обобщенных силах.
 - 142. Условия равновесия системы в обобщенных координатах.
 - 143. Определение обобщенных сил в системах с одной и двумя степенями свободы.
- 144. Дифференциальные уравнения движения механической системы в обобщенных координатах (уравнения Лагранжа второго рода). Кинетический потенциал.

Оценивание студента на экзамене по дисциплине «Теоретическая механика»:

Баллы (итоговой рейтинговой оценки)	Освоение компетенций	Требования к знаниям
100-85	Продвинутый	Ответы на поставленные вопросы полные, четкие и развернутые.
	уровень	Решения задач логичны, доказательны и демонстрируют анали-
		тические и творческие способности студента.
84-70	Средний	Даются полные ответы на поставленные вопросы. Показано
	уровень	умение выделять причинно-следственные связи. При решении
		задач допущены незначительные ошибки, исправленные с по-
		мощью «наводящих» вопросов преподавателя.
69-60	Базовый	Ответы на вопросы и решения поставленных задач недостаточно
	уровень	полные. Логика и последовательность в решении задач имеют
		нарушения. В ответах отсутствуют выводы.

Студент, получивший менее 60% от максимального балла за раздел дисциплины или промежуточную аттестацию, считается неаттестованным по данной дисциплине.

Итоговая оценка выставляется путем перевода набранных баллов в соответствии со следующей таблицей:

Дугожин тистицен.	0 6	
Оценка по 5-балльной шкале	Сумма баллов за разделы и	Оценка ECTS
	экзамен	оценка ЕСТБ
5 – «отлично»	90-100	A
4 – «хорошо»	85-89	В
	75-84	С
	70-74	D
3 – «удовлетворительно»	65-69	D
	60-64	E
2 – «неудовлетворительно»	Менее 60	F

Методические указания для преподавателя

1. Указания для проведения лекций

На первой вводной лекции сделать общий обзор содержания курса и отметить новые методы и подходы к решению задач, рассматриваемых в курсе, довести до студентов требования кафедры, ответить на вопросы.

При подготовке к лекционным занятиям необходимо продумать план его проведения, содержание вступительной, основной и заключительной части лекции, ознакомиться с новинками учебной и методической литературы, публикациями периодической печати по теме лекционного занятия. Уточнить план проведения семинарского занятия по теме лекции. Перед изложением текущего лекционного материала напомнить об основных итогах, достигнутых на предыдущих лекциях. С этой целью задать несколько вопросов аудитории и осуществить выборочный контроль знания студентов. В ходе лекционного занятия преподаватель должен назвать тему, учебные вопросы, ознакомить студентов с перечнем основной и дополнительной литературы по теме занятия. Раскрывая содержание учебных вопросов, акцентировать внимание студентов на основных категориях, явлениях и процессах, особенностях их протекания. Раскрывать сущность и содержание различных точек зрения и научных подходов к объяснению тех или иных явлений и процессов.

Следует аргументировано обосновать собственную позицию по спорным теоретическим вопросам. Приводить примеры. Задавать по ходу изложения лекционного материала риторические вопросы и самому давать на них ответ. Это способствует активизации мыслительной деятельности студентов, повышению их внимания и интереса к материалу лекции, ее содержанию. Преподаватель должен руководить работой студентов по конспектированию лекционного материала, подчеркивать необходимость отражения в конспектах основных положений изучаемой темы, особо выделяя, категориальный аппарат. В заключительной части лекции необходимо сформулировать общие выводы по теме, раскрывающие содержание всех вопросов, поставленных в лекции. Объявить план очередного практического занятия, дать краткие рекомендации по подготовке студентов к семинару. Определить место и время консультации студентам, пожелавшим выступить на семинаре с докладами и рефератами.

На последней лекции уделить время для обзора наиболее важных положений, рассмотренных в курсе.

2. Указания для проведения практических занятий Четко обозначить тему семинара.

Обсудить основные понятия, связанные с занятия.

В процессе решения задач вести дискуссию со студентами о правильности применения теоретических знаний.

Отмечать студентов, наиболее активно участвующих в решении задач и дискуссиях.

В конце занятия задать аудитории несколько контрольных вопросов.

3. Указания по контролю самостоятельной работы студентов

По усмотрению преподавателя задание на самостоятельную работу может быть индивидуальным или фронтальным.

При использовании индивидуальных заданий требовать от студента письменный отчет о проделанной работе.

При применении фронтальных заданий вести коллективные обсуждения со студентами основных теоретических положений.

С целью контроля качества выполнения самостоятельной работы требовать индивидуальные отчеты (допустимо вместо письменного отчета применять индивидуальные контрольные вопросы).

Методические указания для студента

1. Указания для прослушивания лекций

Перед началом занятий внимательно ознакомиться с учебным планом проведения лекций и списком рекомендованной литературы.

Перед посещением очередной лекции освежить в памяти основные концепции пройденного ранее материала. Подготовить при необходимости вопросы преподавателю. Не надо опасаться, что вопросы могут быть простыми.

На лекции основное внимание следует уделять не формулам и математическим выкладкам, а содержанию изучаемых вопросов, определениям и постановкам задач.

В процессе изучения лекционного курса необходимо по возможности часто возвращаться к основным понятиям и методам решения задач (здесь возможен выборочный контроль знаний студентов).

Желательно использовать конспекты лекций, в которых используется принятая преподавателем система обозначений.

Для более подробного изучения курса следует работать с рекомендованными литературными источниками и вновь появляющимися источниками.

2. Указания для участия в практических занятиях.

Перед посещением семинара уяснить тему занятия и самостоятельно изучить связанные с ней понятия и методы решения задач.

Перед решением задач активно участвовать в обсуждении с преподавателем основных по-

нятий, связанных с темой занятия.

В процессе решения задач вести дискуссию с преподавателем о правильности применения методов их решения.

По возможности самостоятельно доводить решение предлагаемых задач до окончательного итога.

В конце практического занятия при необходимости выяснить у преподавателя неясные вопросы.

Основные результаты выполнения работы необходимо распечатать.

3. Указания для выполнения самостоятельной работы

Получить у преподавателя задание и список рекомендованной литературы. Изучение теоретических вопросов следует проводить по возможности самостоятельно, но при затруднениях обращаться к преподавателю.

Подготовить письменный отчет о проделанной работе.

При выполнении фронтальных заданий по усмотрению преподавателя работа может быть оценена без письменного отчета на основе ответов на контрольные вопросы, при условии активной самостоятельной работы. Подготовить ответы на контрольные вопросы.

Учебно-методическое и информационное обеспечение учебной дисциплины Основная литература:

- 1. Доронин, Ф.А. Теоретическая механика: учеб. пособие / Ф.А. Доронин. Электрон. дан. Санкт-Петербург: Лань, 2018. 480 с. Режим доступа: https://e.lanbook.com/book/101840.
- 2. Хямяляйнен, В. А. Теоретическая механика : учебное пособие / В. А. Хямяляйнен. 3-е изд. Кемерово : КузГТУ имени Т.Ф. Горбачева, 2020. 226 с. https://e.lanbook.com/reader/book/145146/#1
- 3. Яковенко, Γ . Н. Краткий курс теоретической механики : учебное пособие / Γ .Н. Яковенко. 6-е изд. Москва : Лаборатория знаний, 2020. 119 с. https://e.lanbook.com/reader/book/135499/#1
- 4.Диевский, В.А. Теоретическая механика. Сборник заданий: Учебное пособие: учеб. пособие / В.А. Диевский, И.А. Малышева. Электрон. дан. СанктПетербург: Лань, 2018. 192 с. Режим доступа: https://e.lanbook.com/book/98236. Дополнительная литература:
- 5. Мещерский, И. В. Задачи по теоретической механике: учебное пособие / И. В. Мещерский; под редакцией В. А. Пальмова, Д. Р. Меркина. 52-е изд., стер. Санкт-Петербург: Лань, 2019. 448 с. Режим доступа: https://e.lanbook.com/reader/book/115729/#440
- 6. Атапин, В. Г. Механика. Теоретическая механика : учебное пособие / В. Г. Атапин. Новосибирск : НГТУ, 2017. 108 с. https://e.lanbook.com/reader/book/118427/#1
- 7. Прасолов, С. Г. Механика. Теоретическая механика: учебное пособие / С. Г. Прасолов. Тольятти: ТГУ, 2019. 99 с. https://e.lanbook.com/reader/book/139662/#1
- 8. Бертяев, В. Д. Теоретическая и аналитическая механика. Учебноисследовательская работа студентов: учебное пособие / В. Д. Бертяев, В. С. Ручинский. Санкт-Петербург: Лань, 2019. 424 с. https://e.lanbook.com/reader/book/111879/#2

Программное обеспечение и Интернет-ресурсы:

- 9. Теоретическая механика. Электронный учебный курс для студентов очной и заочной форм обучения / Сост. Каримов И. Режим доступа: http://www.teoretmeh.ru/
- 10. Образование и механика. Образовательный сайт / Сост. Косицын А.Ю. Режим доступа: http://www.emomi.com/

Материально-техническое обеспечение учебной дисциплины

Лекционные занятия проводятся в учебной аудитории, оборудованной видеопроектором, экраном, персональным компьютером и динамиками.

Практические занятия проводятся в аудитории, в которой имеется набор наглядных пособий (кривошипно-ползунный механизм, кривошипно-коромысловый четырехшарнирный механизм, кривошипно-кулисный механизм, зубчатый механизм с цилиндрическими колесами, зубчатый механизм с коническими колесами, планетарный зубчатый механизм, винтовой дифференциальный механизм, кулачковый механизм.

Для самостоятельной работы обучающихся имеются специализированные помещения, оборудованные персональными компьютерами с выходом в Интернет и с доступом к электронно-

библиотечной системе, электронной библиотеке и электронной информационно-образовательной среде вуза, а также к другим библиотечным фондам.

Программа составлена в соответствии с требованиями ОС НИЯУ МИФИ и учебным планом основной образовательной программы по направлению подготовки 18.03.01 «Химическая технология».

Рабочую программу составил: профессор, Чернова Н.М.

Рецензент: доцент, Барановская Л.В.

Программа одобрена на заседании УМКН 18.03.01 «Химическая технология».

Председатель учебно-методической комиссии Чернова Н.М.